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CONSTITUTIVE ASSUMPTIONS
The ensemble is an iid sample from the same
Gaussian distribution as the truth, i.e. x,xn ∼
N (b,B). However, the true moments, b and B
are unknown. Then, by marginalization,

p(x|E) =

∫
p(x|b,B,�E) p(b,B|E) db dB .

THE ENKF-N EFFECTIVE PRIOR

With p(b,B) ∝ |B|−(m+1)/2, the effective prior is

p(w|E) =
(
εN + ‖w‖2IN

)−(N+g)/2

∝ tN (w|g; 0, εNIN ) ,

where εN = 1 + 1
N , and g is the rank of the

nullspace of A. The posterior is p(w|E,y) ∝
exp− 1

2

(
‖y−h(x(w))‖2R + (N+g) log(εN+‖w‖2IN )

)

THE STANDARD ENKF PRIOR

Denote E =
[
x1, . . . xn, . . . xN

]
and let A

be the corresponding matrix of anomalies.
Parameterize x by ensemble weights, w:

x(w) = x̄+ Aw

y − h(x(w)) = y − h(x̄+ Aw) ≈ δ̄ −Yw

Then, p(x|b=x̄,B=B̄) ∝ exp
(
− 1

2‖w‖
2
IN

)
.

THE ENKF’S INTRINSIC BIAS

Define B̄ = 1
N−1

∑N
n=1 (xn − x̄) (xn − x̄)

T. Then

E(B̄) = B ,

(with expectation over all xn). But,
with P̄a = [I− K̄H]B̄, and the same expectation,

E(tr(P̄a)) < tr(Pa) ,

and idem. for K̄.

THE t DISTRIBUTION

Note the thick tails.

N (x|0, 1) ∝ e− 1
2x

2

t 1(x|1; 0, 1) ∝
1

1 + x2
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Gaussian: N (x |0, 1)

t dist.: t1(x |4; 0, 1)

SUMMARY
• Less dogmatic assumptions =⇒ EnKF-N

– Posterior variance depends on innovation
– Better than “unbiased”
– Sequential feedback
– Careful about parameterization

and implicit assumptions
• Primal perspective: Student t prior

– Future: include localization
• Dual perspective: scale mixture

– Adaptive inflation
– Future: estimate model error inflation

SCALE (AND LOC.) MIXTURES
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The effective (thick lines) prior and posteriors are
the averages of the “candidate” (thin lines) prior
and posteriors.

DISTRIBUTIONS OF λ2
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Lambda (λ )

Prior: p(λ2|E) = χ−2(λ2|N−1)
Lklhd: p(y,w?|E, λ2) = exp

(
− 1

2‖δ̄‖
2
YYT/ζ+R

)
Post: p(w?, ζ|E,y) = exp

(
− 1

2 D(ζ)
)

POSTERIOR’S BEHAVIOUR
Prior: Gaussian
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BENCHMARKS
Lorenz-96, N = 20, no model noise,
R = I40, no localization.
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SCALE MIXTURE RE-DERIVATION

The dual EnKF-N may also be derived as a scalar, scale mixture. Let λ2 = ‖x− x̄‖2B̄/‖x− x̄‖
2
B. Then

p(w|E,y) =
∫
p(w, λ2|E,y) dλ2

∝
∫
N (δ̄|Yw,R)N (w/λ|0, εN

N−1IN )χ−2(λ2|N−1)λ−g dλ

∝
∫

exp− 1
2

(
‖Yw − δ̄‖2R +

N−1
εNλ2

‖w‖2IN +
N−1
λ2

+ (N + g) log λ2
)
dλ

≈ c exp− 1
2

(
‖w −w?(ζ?)‖2G?(ζ?)

+ ‖δ̄‖2YYT/ζ?+R + εNζ? − (N + g) log ζ?︸ ︷︷ ︸
D(ζ?)

)
,

where ζ = N−1
εNλ2 .
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