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The ensemble is an iid sample from the same | | DenoteE = [z;, ... z,, ... | and let A
Gaussian distribution as the truth, i.e. x,x, ~ | | be the corresponding matrix of anomahes
N(b,B). However, the true moments, b and B | | Parameterize x by ensemble weights, w: — Prior
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are unknown. Then, by marginalization,
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Then, p(xz|b=&, B=B)  exp (—% |wH%N) i . , P
THE ENKF-N EFFECTIVE PRIOR - rior pOCIE) =X N IV
; Lklhd:  p(y, w.|B,\*) = exp (—5[0]yyr /¢4 r)
With p(b, B) ‘B‘_(m+1)/2, the effective prior is THE ENKEF’S INTRINSIC BIAS Post: p(w,, (|E,y) = exp (—% D(C))
L\ —(N+g)/2 Define B = < >, (z,, — %) (x,, — %) '. Then
p(w[E) = (en + |lwl]], ) ) BENCHMARKS
L(B) =B, The etfective (thick lines) prior and posteriors are .
x tn(wlg;0,enln), the averages of the “candidate” (thin lines) prior Lorenz-96, N = 201 no model noise,
(with expectation over all x,,). But, and posteriors. R = 140, no localization.

where ey = 14 &, and g is the rank of the | | with P® = [I — KH]|B, and the same expectation, . .
. : -@o-3D-Var
nullspace of A. The posterior is p(w|E, y)

_ —— L xt KF
exp — 3 (ly—h(z(w)) ||z + (N+g)log(en+[w|;.)) L(tr(P?)) < tr(P?), POSTERIOR’S BEHAVIOUR 2/ e~ EnKF tuned

—o— EnKF-N mode |

and idem. for K. _ Prior: Gaussian (| ——EnKF-N R1
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Note the thick tails.

— Gaussian: N (x|0,1)
—t dist.: t1(x|4;0,1)
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Prior: Student t 0.4
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