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Reservoir Modeling

Teal South

@ Reservoir in the Gulf of Mexico

@ Monthly production rates of
oil, water and gas avalaible

Source: Christie et al.

Model

@ Five geological layers with uniform properties

@ 9 unknown parameters (porosity, horizontal permeability multipliers for each
layer, vertical to horizontal permeability ratio, rock compressibility, aquifer
strength)

@ Matching to the field oil production rate

@ Eclipse used to simulate the flow in porous media
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Reservoir Modeling

Results (100 forward simulations)
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Figure: Misfit of the mean to the (noisy)
observational data, J=5, 20 iterations.
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Figure: Prediction of the mean
compared to the (noisy) observational
data, J=5, 20 iterations.
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Inverse Problem

Find the unknown data u € X from noisy observations

y=G(u)+n with n ~ N(0,T)

@ u € X parameter vector / parameter function
@ G: X — Y forward response operator; X,Y separable Hilbert spaces
@ y result / observations

@ Evaluation of G expensive
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Inverse Problem

Find the unknown data u € X from noisy observations

y=Gu)+n with n ~ N(0,T)

@ u € X parameter vector / parameter function
@ G: X — Y forward response operator; X,Y separable Hilbert spaces
@ y result / observations

@ Evaluation of G expensive

Deterministic optimisation problem | Bayesian inverse problem
min %Hy —G(w)|?> + R(u) @ wu,7n,y random variables / fields

@ R regularisation term @ Prior g, posterior ¥
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Bayesian Inverse Problem

Find the unknown data w € X from noisy observations

y=G(u)+n

Bayes' Theorem (A. M. Stuart 2010)

Assuming G € C(X,Y) and p0(X) = 1, then the posterior measure 1Y on
u|y is absolutely continuous w.r. to the prior on u and

¥ (du) = — exp(—®(u))pao(du)

with @ : X — R, ®(u) = 3|y — G(u)[? and Z = [ exp(—®(u))puo(du).
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Bayesian Inverse Problem

Find the unknown data w € X from noisy observations

y=G(u)+n

Ensemble Kalman Filter

@ Fully Bayesian inversion is often too expensive.
@ EnKEF is widely used.

@ Currently, very little analysis of the EnKF is available.

Aim: Build analysis of properties of EnKF for fixed ensemble size.
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Bayesian Inverse Problem

Find the unknown data w € X from noisy observations

y=G(u)+n

Ensemble Kalman Filter
Optimisation viewpoint

Study of the properties of the EnKF as a regularisation technique for minimisation of the
least-squares misfit functional

Continuous time limit

Analysis of the properties of the differential equations
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EnKF for Inverse Problems

Sequence of Interpolating Measures

For N € N,h :=1/N, we define a sequence of measures (i, < o, n =1,..., N, which
evolve the prior po into the posterior distribution uy = p¥, by

n

1 (du) = 7

exp(—h®(u))pin (du) < piny1 = Lnpin
n—+1

with nonlinear operator L,, corresponding to application of Bayes' theorem and
normalisation constant Z,, = [ exp(—nh®(u))uo(du) with ®(u) = 3|y — G(u)[?.
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EnKF for Inverse Problems

Sequence of Interpolating Measures

For N € N,h :=1/N, we define a sequence of measures p, < po, n =1,..., N, which
evolve the prior po into the posterior distribution uy = p¥, by

Zn

1 (du) = exp(—h®(u))pn(du) < pins1 = Lnpin

Zn+1

with nonlinear operator L,, corresponding to application of Bayes' theorem and
normalisation constant Z,, = [ exp(—nh®(u))uo(du) with ®(u) = 3|y — G(u)[?.

Ensemble of Interacting Particles

Initial ensemble {ugj)}‘j]:l constructed by prior knowledge, u?) ~ pg iid for J < co.
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EnKF for Inverse Problems

Sequence of Interpolating Measures

For N € N,h :=1/N, we define a sequence of measures p, < po, n =1,..., N, which
evolve the prior po into the posterior distribution uy = p¥, by

Zn

1 (du) = exp(—h®(u))pn(du) < pins1 = Lnpin

Zn+1

with nonlinear operator L,, corresponding to application of Bayes' theorem and
normalisation constant Z,, = [ exp(—nh®(u))uo(du) with ®(u) = 3|y — G(u)[?.

Ensemble of Interacting Particles

Initial ensemble {uéj)}}]:l constructed by prior knowledge, u?) ~ pg iid for J < co.

Linearisation of L, and approximation of u,, by a J-particle Dirac
measure leads to the EnKF method.
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EnKF for Inverse Problems

Update of the EnKF for Inverse Problems

gsz)rl = g) + C L (CFR + hr) (Z/q(fll -

with empirical covariances
C;:il =y ZJ Lu (J) (j)) — T, ®§(Un)
=337 Gd) @ Gul) = Gun) ® G(un),

meanun—sz . (J), Un :JZ] 19 (J)

and observations y(J =y+ nffll, 7755-5)-1 ~ N(0, £T).
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EnKF for Inverse Problems

Update of the EnKF for Inverse Problems

1 .
SJ)rl: 0+ +CE(CR 4 T (()

n

h

with empirical covariances
by =323 uld @ d(u’) — i, @ Glun)
crny =450, 6u?) ©G(ul?’) = Glun) © Glun),
meanun—sz L (]), Un, :JZJ LG(u (”

and observations yff_)H =y+ nff_zl, 7755-;)-1 ~ N(0, £T).

Properties of the EnKF for Inverse Problems e.g. [Iglesias, Law, Stuart 2013]

@ The ensemble parameter estimate lies in the linear span of the initial ensemble.

@ This linear span property implies that the accuracy of the EnKF estimate is
bounded from below by the best approximation in span{uél), .. .,ué‘])}.

@ In the linear case, the EnKF estimate converges in the limit J — oo to the solution

of the regularised least-squares problem.
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Continuous Time Limit

Update of the Iterates

uly =ulf) +h C (W CP 4T 1(

+h3 O (RO 4T
with Cui1 ~ N(0,id).

Limiting SDE

Interpreting the iterate as uy) ~ ul) (nh) gives

y —Q(uq(f)))

n+1

du® = c*rr=Y(yt — Gu))dt + C*PT—z AW |

where W<1), ceey W are pairwise independent cylindrical Wiener processes and y'

denotes the noisy observational data G(u') + n' with 5t ~ A(0,I).
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Continuous Time Limit (Linear Case)

Assumption: Linear response operator G(u) = Au with A € L(X,Y)

un]J)rl ul?) + hC(up) AT~ (yg—i)—l - A“ELJL)

with  Clup) =237 () =) ® (Wi —@a) and T = 237w
Limiting SDE

du) = C(u) A T A(ul + n — u®) dt + C(u) A T2 dW ) |
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Continuous Time Limit (Linear Case)

Assumption: Linear response operator G(u) = Au with A € L(X,Y)

)y = + hC(u) AT (y), — Aulll)

with — Clun) =337 (uf —%) ® (uf %) and T =537 ul).

Noise-free Case

Limiting ODE

du) = C(u) A T Al + 7 — u®) dt + C(u) A T2 AW,
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Continuous Time Limit (Linear Case)

Assumption: Linear response operator G(u) = Au with A € L(X,Y)

ud)y = uf) + hC(u) AT (), — Aufl),)

with Cun) = %Z}Izl(ugj) — ) ® (u) —u,) and Up = %ijl u.
Noise-free Case

Limiting ODE

du') = C(u)A* TP A(ul — w9 dt,

or equivalently, ) )
iu(a) = —C(u)D,®(u);y)
dt

with potential ®(u;y) = %HFf%(y — Au)|2.
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Long-time Behaviour (Linear Case)

(a) Global Existence of Solutions
(b) Ensemble Collapse

(c) Convergence of Residuals
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Long-time Behaviour (Linear Case)

(a) Global Existence of Solutions

Assume that y is the image of a truth uf € X under A. Let u)(0) € X for
j=1,...,J and define X; to be the linear span of the {u<j)(0)}j=1.

Then, the limiting ODE has a unique solution ) (-) € C([0, 00); Xp) for
j=1,...,J.
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Long-time Behaviour (Linear Case)

(a) Global Existence of Solutions

Assume that y is the image of a truth uf € X under A. Let u)(0) € X for
j=1,...,J and define X; to be the linear span of the {u(j)(O)}Jle.

Then, the limiting ODE has a unique solution ) (-) € C([0, 00); Xp) for
j=1,...,J.

Sketch of Proof
Quantities
NONRORETS FO) — @) _ oyt

—u',

Elj = <Ae(l),A€(j)>F, le = <AT(l),AT<j)>F, .Flj = <AT(Z),A6(j)>F .
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Long-time Behaviour (Linear Case)

(a) Global Existence of Solutions

Assume that y is the image of a truth uf € X under A. Let u)(0) € X for
j=1,...,J and define X; to be the linear span of the {u(j)(O)}Jle.

Then, the limiting ODE has a unique solution ) (-) € C([0, 00); Xp) for
j=1,...,J.

Sketch of Proof

J J
d 1 d 1 :
76(3):_72Ejkd(’9)7 ar(]):_jZijr(k)7 ji=1,...,J
k=1

dt

k=1
d 2 o d 2 T d 2
—E=-ZE — R=-ZFF —F=—-—=-FF
dt J dtR J ’ dt J

Global existence of E, R and F = global existence of r and e
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Long-time Behaviour (Linear Case)

(b) Ensemble Collapse

Assume that y is the image of a truth uf € X under A. Let u)(0) € X for

j=1,...,J.

The solution of d

dp_ _2p
dt J

with initial cond. E(0) = XAoX*, A¢ = diag{A",..

is given by E(t) = XA(t)X
A(t) satisfies the following decoupled ODE

d)@) 2
— _ 202
dt J()\ )

with solution AU)(t) = (2¢ + (J)) , if )\ 7é 0, otherwise AU)(t) = 0.

LAY, X € R7%Y orthogonal,
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Long-time Behaviour (Linear Case)

(b) Ensemble Collapse

Assume that y is the image of a truth uf € X under A. Let u)(0) € X for
j=1,...,J.

The solution of d
dp_ _2p
dt J
with initial cond. E(0) = XAOX* Ao = diag{A{", ..., A"}, X € R7*7 orthogonal,

is given by E(t) = XA(t)X
A(t) satisfies the following decoupled ODE
d)@) 2
— —Z2(\0))2
dt J()\ )

with solution AU)(t) = (2¢ + (J)) , if )\ 7é 0, otherwise AU)(t) = 0.

The rate of convergence of E and F' is algebraic with a constant growing with
larger ensemble size J.
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Long-time Behaviour (Linear Case)

(c) Convergence of Residuals

Assume that y is the image of a truth uf € X under A.Let Yl denote the linear span of
the {Ae(j)(O)}]J:l and let Y+ denote the orthogonal complement of Yl in I with
respect to the inner product (-,-)r and assume that the initial ensemble members are
chosen so that Y has the maximal dimension min{.J — 1, dim(}))}.

Then ArU)(t) may be decomposed uniquely as

A'rﬁj) (t) + AT’Y) (t) with AT‘ﬁj) c Yl and A'rf) cvYt

Furthermore Arl(lj)(t) — 0 ast— oo and Ar(f)(t) = Ar(f)(O) — A?‘(j).
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Long-time Behaviour (Linear Case)

(c) Convergence of Residuals

Assume that y is the image of a truth uf € X under A.Let Yl denote the linear span of
the {Ae(j)(O)}JJ=1 and let Y+ denote the orthogonal complement of Yl in I with
respect to the inner product (-,-)r and assume that the initial ensemble members are
chosen so that Y has the maximal dimension min{.J — 1, dim(}))}.

Then ArU)(t) may be decomposed uniquely as

Arﬁj)(t) - Ar(f)(t) with Arﬁj) e Yl and Ar(f) eyt

Furthermore Arﬁj) (t) = 0 as t — oo and Ar(f) (t) = Ar(f) (0) = Ar(ll).

Adaptive choice of the initial ensemble to ensure convergence of the residuals.

C. Schillings (UoW) EnKF for Inverse Problems EnKF WS - 21.6.2016 12 /17



Long-time Behaviour (Linear Case)

Idea of Proof

Subspace property
J

Ae@(t Z (t)Ae™ (0)

where the matrix L = {{;;,} is invertible.

Decomposition of the residual

J
Ar( (¢ Z apAet®) () + AT(I)
k=1
Convergence of the residuals
Boundedness of the coefficient vector
2 < (J) 2
@l < Sla(O)

gives convergence of the residuals.
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Long-time Behaviour for Noisy Data (Linear Case)

Find the parameters u from (noisy) observations y'

ot = Al 20

Global Existence of Solutions v

Ensemble Collapse v

Convergence of Residuals  — convergence of the misfit
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Variants on EnKF

Variance Inflation
du)
dt

where Cy is a self-adjoint, strictly positive operator.

= —(aCy + C(u)) D, ®(u); y),
Localisation

Randomised Search
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Variants on EnKF

Variance Inflation

Localisation
p:DxD =R,  plz,y)=exp(—|z—y[),

where D C R? denotes the physical domain and | - | is a suitable norm in D, r € N.

du ()
de

= —C"(u)D,®W);y), j=1,...,J,
where C"¢(u)¢(z) = fD o(Y)k(z,y)p(z,y)dy with k being the kernel of C(u), ¢ € X.

Randomised Search
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Variants on EnKF

Variance Inflation
Localisation

Randomised Search
M1 = Ly Py

where P, is any Markov kernel which preserves .

du)

J
pn 72 (™) =G,y =G () —7)
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Numerical Experiments (Linear Case)

1-dimensional elliptic equation

d?p

L —5+p=u inD:=(0,7), p=0 indD,

where

A=0oL ' with L =— dz—l—zdandD( ) = H2(D)OHO(D)
0: X —RE, eqmspaced observation points in D with spacing TN 27NK at
k=1,...,2« —1, or(-) =4d(- —a:k)W|thK:2NK—1‘

Tk = 2NK7
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Numerical Experiments (Linear Case)

1-dimensional elliptic equation

d2p

_@‘i‘p:u inD:=(0,7), p=0 indD.

The goal of computation is to recover the unknown data u' from observations

y = OL ' +n=Au" +7.
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Numerical Experiments (Linear Case)

1-dimensional elliptic equation

d?p

4 —5+p=u inD:=(0,7), p=0 indD.

The goal of computation is to recover the unknown data u' from observations
y = OL %W +n=Au+1.

Computational Setting

@ Noisy case, ' = 1.
@ u~ N(0,C) with C = B(A —id)~! and with 8 = 10.

@ Finite element method using continuous, piecewise linear ansatz functions on a uniform
mesh with meshwidth h = 2—8 (the spatial discretisation leads to a discretisation of w, i.e.

u € st’l).
@ The space A = span{u(j)}J ; is chosen based on the KL expansion of C = B(A—id)~ !

(in red and green) and in an adaptive way minimising Ar ( ) (in blue) .
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Numerical Experiments (Linear Case)

Underdetermined case, K=24-1,J=5

— W ME =5V
—— WS IME J=50 VI
- = W2 J=5loc
- — W2 J=5010c
= I S J=5 MM
= 1 3|2 J=50 MM

— WA I=5 VI
—— 1 3 A2 J=50 VI
- = 13 AMZ =5 loc
- = 143 |A*2 J=50 loc
=== 1 3 [Ar2 J=5 MM
=== 14 3 A2 =50 MM

Figure: Quantities |r|3, |Ar|% w.r. to time ¢, J =5 (red) and J = 50 (green) for the
discussed variants, 8 = 10, 8 = 10, K = 2* — 1, initial ensemble chosen based on KL

expansion of C' = B(A —id)™".
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Numerical Experiments (Linear Case)

Underdetermined case, K=24-1,J=5

utruth

EnKF est. J=5 VI
—— EnKF est. J=50 VI
— = EnKF est. J=5loc
— = EnKF est. J=50 loc
=—==-= EnKF est. J=5 MM
— === EnKF est. J=50 MM

x  observations

EnKF est. J=5 VI
EnKF est. J=50 VI
— — EnKF est. J=5loc
— — EnKF est. J=50 loc
—==—=EnKF est. J=5 MM
—=-—-= EnKF est. J=50 MM

Figure: Comparison of the EnKF estimate with the truth and the observations, J =5

(red) and J = 50 (green) for the discussed variants, 3 = 10, K = 2* — 1, initial
ensemble chosen based on KL expansion of C' = 3(A — id)
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Conclusions and Outlook

@ Deriving the continuous time limit allows to determine the asymptotic
behaviour of important quantities of the algorithm.

@ The continuous approach offers the possibility to improve the performance
of the method by choosing appropriate numerical discretisation schemes
based on the properties of the solution.

@ Generalisation of the results to noisy observational data, i.e. Auf + .

@ Improving the performance of the algorithm by controlling the approximation
quality of the subspace spanned by the ensemble.

Analysis of EnKF variants

Variance inflation
Localisation

Iterative regularisation
Markov mixing

vV vyVvYy
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