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Context

Assimilation in the unstable subspace (AUS paradigm)

ISeveral numerical results suggest that the skills of ensemble-based data assimilation
methods in chaotic systems are related to the instabilities of the underlying dynamics
[Ng et al., 2011].

INumerical evidence that some asymptotic properties of the ensemble-based
covariances (rank, range) relate to the unstable modes of the dynamics [Sakov and Oke,
2008; Carrassi et al., 2009].

IThis behaviour is at the basis of algorithms known as Assimilation in the Unstable
Subspace [Trevisan and Uboldi, 2004; Palatella et al. 2013], and exploited in the
Iterative Ensemble Kalman Filter/Smoother [Bocquet and Sakov, 2012-2016].

IBut we need formal proof with a view to a better design of reduced-order methods,
and a better understanding of these results. A formal proof could be obtained in the
linear model case, while numerical evidence could be obtained in the
non-Gaussian/nonlinear case.
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Context

Characterization of model dynamics: reminder

IState and (infinitesimal) error dynamics:

dx(t)

dt
= Mt(x(t)) ,

de(t)

dt
= Mx(t),te(t) . (1)

The time integration of the linear error dynamics yields the resolvent:

e(t1) = M(t1,t0)e(t0) . (2)

IThe Oseledec theorem tells that the limiting matrix (far future)

S(t0) = lim
t1→∞

{
M(t1,t0)TM(t1,t0)

} 1
2(t1−t0)

. (3)

exists, has eigenvalues eλ1 ≥ eλ2 ≥ . . .≥ eλn where the λi are called the Lyapunov
exponents that do not depend on t0, and has eigenvectors that are called the forward
Lyapunov vectors (which depend on t0). Symmetrically (far past)

S(t1) = lim
t0→−∞

{
M(t1,t0)M(t1,t0)T

} 1
2(t1−t0)

. (4)

exists, has the same eigenvalues that do not depend on t1, and eigenvectors that are
called the backward Lyapunov vectors (which depend on t1).
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Context

Characterization of model dynamics: reminder

IThe forward and backward Lyapunov vectors are orthonormal. They are
norm-dependent.

IThe positive Lyapunov exponents correspond to exponentially growing error/unstable
modes. The negative Lyapunov exponents correspond to exponentially decaying
error/stable modes. The zero Lyapunov exponents correspond to neutral modes.

IThe backward Lyapunov vectors generate a sequence of embedded subspaces of Rn

for each t1 such that

F−1 (t1)⊂ F−2 (t1)⊂ ·· · ⊂ F−n (t1) = Rn (5)

where for e ∈ F−i (t1)\F−i−1(t1), ‖M−1(t1,t0)e‖ ∼
t0→−∞

e−λi (t1−t0)‖e‖.

IWe define the unstable-neutral subspace Ut1 ≡ F−n0
(t1) as the space generated by the

n0 backward Lyapunov vectors that are related to positive and zero Lyapunov
exponents. Here, the stable subspace is defined as the orthogonal U ⊥

t1
of Ut1 in Rn.

ISee [Legras and Vautard, 1996] for a topical introduction.
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Theoretical results for linear dynamical systems The filter case

Linear case: Degenerate Kalman filter equations

IModel dynamics and observation model:

xk = Mkxk−1 + wk , (6)

yk = Hkxk + vk . (7)

The model and observation noises, wk and vk , are assumed mutually independent,
unbiased Gaussian white sequences with statistics

E[vkvT
l ] = δk,lRk , E[wkwT

l ] = δk,lQk , E[vkwT
l ] = 0 . (8)

IForecast error covariance matrix Pk recurrence of the Kalman filter (KF)

Pk+1 = Mk+1 (I + PkΩk)−1 PkMT
k+1 + Qk+1, (9)

where
Ωk ≡HT

kR−1
k Hk (10)

are the precision matrices and P0 can be of arbitrary rank.

I In the case Qk ≡ 0, Gurumoorthy at al. (2016) proved rigorously that the full-rank
KF Pk collapses onto the unstable subspace.

IStill in the case Qk ≡ 0, this is going to be generalised [Bocquet at al., 2016] in the
following in several ways and for degenerate P0 required to connect to reduced-order
methods such as the ensemble Kalman filter (EnKF).
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Theoretical results for linear dynamical systems The filter case

Result 1: Bound of the covariance free forecast

ISimple inequality in the set of the semi-definite symmetric matrices

Pk ≤Mk:0P0MT
k:0 + Ξk . (11)

where

Ξ0 ≡ 0 and fork ≥ 1 Ξk ≡
k

∑
l=1

Mk:lQlM
T
k:l (12)

is known as the controllability matrix [Jazwinski, 1970].

I In the absence of model noise (Qk ≡ 0 for the rest of this talk), it reads

Pk ≤Mk:0P0MT
k:0. (13)

Assuming the dynamics is non-singular

Im(Pk) = Mk:0 (Im(P0)) . (14)

If n0 is the dimension of the unstable-neutral subspace, it can further be shown that

lim
k→∞

rank(Pk)≤min{rank(P0),n0} . (15)
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Theoretical results for linear dynamical systems The filter case

Result 2: Collapse onto the unstable subspace

I Let σk
i , for i = 1, . . . ,n denote the eigenvalues of Pk ordered as σk

1 ≥ σk
2 · · · ≥ σk

n . We
can show that

σ
k
i ≤ αi exp

(
2kλ

k
i

)
(16)

where kλ k
i is a log-singular value of Mk:0 and limk→∞ λ k

i = λi . This gives an upper
bound for all eigenvalues of Pk and a rate of convergence for the n−n0 smallest ones.

I If Pk is uniformly bounded, it can further be shown that the stable subspace of the
dynamics is asymptotically in the null space of Pk , i.e. for any vector uk:0 in the stable
subspace

lim
k→∞
‖Pkuk:0‖= 0. (17)
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Theoretical results for linear dynamical systems The filter case

Numerical illustration and verification

0 200 400 600 800 1000

10
−20

10
−10

10
0

(a) Eigenvalues of analysis error covariance matrix

Assimilation count

M
a

g
n

it
u

d
e

0 5 10 15 20 25 30
0

2

4

6

8

10

(b) Convergence rates of eigenvalues

Stable dimension (least to most)

C
o

n
v
e
rg

e
n

c
e
 r

a
te

 

 

Estimated convergence rates

2*|Lyapunov exponents|

Linearized Lorenz-95 model
around a Lorenz-95 trajectory.

(a) Evolution
of the eigenvalues of Pk .

(b) Convergence rate to 0
of the eigenvalues related to
the stable modes.

M. Bocquet 11th EnKF workshop, Bergen, Norway, 20-22 June 2016 10 / 30



Theoretical results for linear dynamical systems The filter case

Result 3: Explicit dependence of Pk on P0

IUsing either analytic continuation or the symplectic symmetry of the linear
representation of covariances, we have proven that

Pk = Mk:0P0MT
k:0

(
I + ΓkMk:0P0MT

k:0

)−1
. (18)

where

Γk ≡
k−1

∑
l=0

M−T
k:l ΩlM

−1
k:l . (19)

IAn alternative is
Pk = Mk:0P0 [I + ΘkP0]−1 MT

k:0 (20)

where

Θk ≡MT
k:0ΓkMk:0 =

k−1

∑
l=0

MT
l :0ΩlMl :0. (21)

is the information matrix, directly related to the observability of the DA system.

IFormulas theoretically enlightening!
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Theoretical results for linear dynamical systems The filter case

Result 4: Asymptotics of Pk

IQuestions: Under which conditions does Pk forget about P0 = X0XT
0 ? Can we

analytically compute its asymptotics?

IWe proposed a sufficient set of conditions

Condition 1: Assume the forward Lyapunov vectors at t0 associated to the
unstable and neutral directions are the columns of V+,0 ∈ Rn×n0 . The condition
reads

rank
(

XT
0 V+,0

)
= n0. (22)

Condition 2: The model is sufficiently observed so that the unstable and neutral
directions remain under control, that is

UT
+,kΓkU+,k > εI (23)

where U+,k is a matrix whose columns are the backward Lyapunov vectors related
to non-negative exponents and ε > 0 is a positive number.

Condition 3: For any neutral backward Lyapunov vector uk , we have

lim
k→∞

uT
kΓkuk = ∞, (24)

i.e. the neutral modes should be sufficiently observed.
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Theoretical results for linear dynamical systems The filter case

Result 4: Asymptotics of Pk

Under these three conditions, we obtain

lim
k→∞

{
Pk −U+,k

[
UT

+,kΓkU+,k

]−1
UT

+,k

}
= 0. (25)

The asymptotic sequence does not depend on P0, only Γk !

IPeculiar role of the neutral modes (arithmetic convergence).

INumerical illustration and verification

Assimilation count
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Theoretical results for linear dynamical systems The filter case

From the degenerate KF to the square-root EnKF

INormalised anomaly decomposition

Pk = XkXT
k . (26)

ISquare-root formulation; right-transform update formula

Xk = Mk:0X0

[
I + XT

0 ΘkX0

]−1/2
Ψk (27)

where Ψk is an orthogonal matrix.
ISquare-root formulation; left-transform update formula

Xk =
[
I + Mk:0P0MT

k:0Γk

]−1/2
Mk:0X0Ψk . (28)

IWith linear models, Gaussian observation and initial errors, the (square-root)
degenerate KF is equivalent to the square-root EnKF and can serve as a proxy to the
EnKF applied to nonlinear models.
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Theoretical results for linear dynamical systems The smoother case

Degenerate square root Kalman smoother

tL−3 tL−2

yL−3 yL−2

tL−1 tL

yL−1 yL

tL+1 tL+2

yL+1 yL+2

tL−2

tL

tL+2

S∆t

S∆t

L∆t

IThe scheme at a glance, variational correspondence (x = xk + Xkw) :

J̃ (w) =
1

2

k+L

∑
l=k+L−S+1

‖yl −HlMl :k (xk + Xkw)‖2
Rl

+
1

2
‖w‖2 (29)

IFrom the Hessian of J̃ ,

IN + XT
k Ω̂kXk where Ω̂k ,

k+L

∑
l=k+L−S+1

MT
l :kΩlMl :k , (30)

we infer

Xk+S = Mk+S:kXk

(
IN + XT

k Ω̂kXk

)− 1
2

Ψk . (31)
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Theoretical results for linear dynamical systems The smoother case

Degenerate square root Kalman smoother: dependence on X0

IFrom the recurrence, we can obtain the explicit expression of the anomalies as a
function of the initial anomalies.

I Left-transform update; if k = pS , p = 0,1, . . . :

Xk = Mk:0X0

[
IN + XT

0 Θ̂kX0

]− 1
2

Ψk (32)

where

Θ̂k ,
p−1

∑
q=0

MT
qS :0Ω̂qSMqS :0 . (33)

IRight-transform update; if k = pS , p = 0,1, . . . :

Xk =
[
In + Mk:0P0MT

k:0Γ̂k

]− 1
2

Mk:0X0Ψk (34)

where

Γ̂k =
p−1

∑
q=0

M−T
k:qS Ω̂qSM−1

k:qS . (35)
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Theoretical results for linear dynamical systems The smoother case

Degenerate square root Kalman smoother: convergence onto the

unstable-neutral subspace

IThe convergence rate of the collapse of Pk of the smoother is not expected to be
faster than the filter’s: the bounding rate is the same.

IHowever the accuracy of the smoother for re-analysis is expected to be better which
should impact the asymptotic sequences. Indeed we have, for k = pS , p = 0,1, . . .:

lim
k→∞

{
Xk −U+,k

[
UT

+,k Γ̂kU+,k

]− 1
2

Ψk

}
= 0 . (36)

IThe only difference is in the observability matrix Γ̂k , for k = pS , p = 0,1, . . .:

Γ̂k = Γk +
k+L−S

∑
l=k

M−T
k:l ΩlM

−1
k:l . (37)

which guarantees that

U+,k

[
UT

+,k Γ̂kU+,k

]−1
UT

+,k ≤U+,k

[
UT

+,kΓkU+,k

]−1
UT

+,k . (38)
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Theoretical results for linear dynamical systems From linear to nonlinear models

From linear to nonlinear models

INonlinear model dynamics and nonlinear observation model:

xk = Mk:k−1(xk−1) , (39)

yk = Hk(xk) + vk (40)

ISquare root degenerate Kalman filter −→ Square root ensemble Kalman filter (EnKF)

ISquare root degenerate Kalman smoother −→ Iterative ensemble Kalman smoother
(IEnKS)

IThe IEnKS follows the square root degenerate Kalman smoother that we inferred
from a variational principle, but from the cost function

J̃ (w) =
1

2

k+L

∑
l=k+L−S+1

‖yl −Hl ◦Ml :k (xk + Xkw)‖2
Rl

+
1

2
‖w‖2 . (41)

The this archetype of the so-called four-dimensional EnVar method (4DEnVar) which
avoid the need to use an adjoint model, but with a proper ensemble update, and an
outer loop. The IEnKS is systematically more accurate for smoothing and filtering than
4D-Var, the EnKF, and the EnKS.
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Numerical results for nonlinear systems
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Numerical results for nonlinear systems The Lorenz-95 model

Nonlinear chaotic models: the Lorenz-95 low-order model
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I It represents a mid-latitude zonal circle of the global atmosphere.
ISet of M = 40 ordinary differential equations [Lorenz and Emmanuel 1998]:

dxm
dt

= (xm+1−xm−2)xm−1−xm +F , (42)

where F = 8, and the boundary is cyclic.
IConservative system except for a forcing term F and a dissipation term −xm.
IChaotic dynamics, 13 positive and 1 neutral Lyapunov exponents, a doubling time of
about 0.42 time units.
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Numerical results for nonlinear systems Eigenspectrum

Spectrum of the analysis error covariance matrix
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Numerical results for nonlinear systems Geometry

Geometry of the anomaly simplex and unstable-neutral subspace

IAnomaly to perturbation:

IAnomaly: vnk = [Xk ]n with 1≤ n ≤ N. Lyapunov vector: up
k at tk , 1≤ p ≤ P.

IProjection of vnk onto up
k :

∥∥vnk
∥∥cos(θ

n,p
k )

where θ
n,p
k is the angle between the vectors (recall ‖up

k‖= 1.)

IAnomaly to the unstable-neutral subspace:

IConsider the relative position of an anomaly with respect to the unstable-neutral
subspace Uk , where Uk = Span

{
u1
k ,u

2
k , . . . ,u

n0
k

}
.

ISquare cosine of the angle between the anomaly vnk and Uk is obtained as

cos2(θ
n
k ) =

n0

∑
p=1

cos2(θ
n,p
k ) =

n0

∑
p=1

{
(up

k)Tvnk
}2∥∥vnk

∥∥2
. (43)

IAnomaly simplex to the unstable-neutral subspace:
A complete characterization of the relative orientation can be achieved by a set of
angles, called principal angles, whose number is given by the minimum of the
dimensions of both subspaces. These angles are intrinsic and do not depend on the
parameterization of both subspaces.
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Numerical results for nonlinear systems Geometry

Nonlinear chaotic model
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Numerical results for nonlinear systems Geometry

Nonlinear chaotic model
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unstable-neutral subspace as a function of the interval between updates (EnKF and
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Numerical results for nonlinear systems Geometry

Nonlinear chaotic model
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Numerical results for nonlinear systems Geometry

Nonlinear chaotic model
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Conclusions

Conclusions

We proved that if the models are linear and the initial and observation error
statistics are Gaussian, the (degenerate) KF, or (deterministic) EnKF in this case,
collapse onto the unstable subspace. We provided a rate of convergence.

We showed that under specific observability conditions and for P0 of sufficiently
large column space, Pk asymptotics is independent from P0 and can be computed
analytically.

These results can be extrapolated to the case of smoothers.

These degenerate KF/KS serve as proxies for the EnKF and the IEnKS (for
filtering and smoothing).

We numerically studied the collapse onto the unstable-neutral subspace of those
nonlinear filter/smoother using a geometrical description of the relative position of
the unstable-neutral subspaces with the set of filter anomalies.

M. Bocquet 11th EnKF workshop, Bergen, Norway, 20-22 June 2016 28 / 30



Conclusions

Final word

Thank you for your attention!
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