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Outline

© Context
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Assimilation in the unstable subspace (AUS paradigm)

» Several numerical results suggest that the skills of ensemble-based data assimilation
methods in chaotic systems are related to the instabilities of the underlying dynamics
[Ng et al., 2011].

» Numerical evidence that some asymptotic properties of the ensemble-based
covariances (rank, range) relate to the unstable modes of the dynamics [Sakov and Oke,
2008; Carrassi et al., 2009].

» This behaviour is at the basis of algorithms known as Assimilation in the Unstable
Subspace [Trevisan and Uboldi, 2004; Palatella et al. 2013], and exploited in the
Iterative Ensemble Kalman Filter/Smoother [Bocquet and Sakov, 2012-2016].

» But we need formal proof with a view to a better design of reduced-order methods,
and a better understanding of these results. A formal proof could be obtained in the
linear model case, while numerical evidence could be obtained in the
non-Gaussian/nonlinear case.
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Characterization of model dynamics: reminder

» State and (infinitesimal) error dynamics:

dx(t) de(t)
e nx(0), S =My eelt). (1)
The time integration of the linear error dynamics yields the resolvent:
e(t1) = M(t1, to)e(to) - (2)

» The Oseledec theorem tells that the limiting matrix (far future)
1
S(to) = lim {M(t1,t0)™M(t1,80) } ™. 3)
100

exists, has eigenvalues eM > et > > e’ where the A; are called the Lyapunov
exponents that do not depend on tg, and has eigenvectors that are called the forward
Lyapunov vectors (which depend on tp). Symmetrically (far past)

1
S(ty) = toinlm{M(tl,to)M(tl,tO)T}Z“I*"” : (4)

exists, has the same eigenvalues that do not depend on t1, and eigenvectors that are
called the backward Lyapunov vectors (which depend on t7).
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Characterization of model dynamics: reminder

» The forward and backward Lyapunov vectors are orthonormal. They are
norm-dependent.

» The positive Lyapunov exponents correspond to exponentially growing error/unstable
modes. The negative Lyapunov exponents correspond to exponentially decaying
error/stable modes. The zero Lyapunov exponents correspond to neutral modes.

» The backward Lyapunov vectors generate a sequence of embedded subspaces of R”
for each t; such that

Fi(ti)CFy(t1)C---CF,(t1)=R" (5)

where for e € F; (t1)\F;_;(t1), IM~1(t1,t0)e]| N~ e Milti—to)|e]|.

» We define the unstable-neutral subspace %4, = F, (t1) as the space generated by the
ng backward Lyapunov vectors that are related to positive and zero Lyapunov
exponents. Here, the stable subspace is defined as the orthogonal %tli of %, in R".

» See [Legras and Vautard, 1996] for a topical introduction.
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Theoretical results for linear dynamical systems

© Theoretical results for linear dynamical systems
@ The filter case
@ The smoother case
@ From linear to nonlinear models
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The fiter case
Linear case: Degenerate Kalman filter equations

» Model dynamics and observation model:
Xg = Myxy 1+ wy, (6)
Yk = Hixpe + vy (7

The model and observation noises, wy and vy, are assumed mutually independent,
unbiased Gaussian white sequences with statistics

Efviv/] =8 /Re,  E[wiew]] = 8,Qx, E[vw]]=0. (8)
» Forecast error covariance matrix Py recurrence of the Kalman filter (KF)
Prr1 =Myt (14+PxQ) T PME |+ Qpyr, (9)
where
Q =HIR, 'H, (10)

are the precision matrices and Pg can be of arbitrary rank.

» In the case Q4 =0, Gurumoorthy at al. (2016) proved rigorously that the full-rank
KF Py collapses onto the unstable subspace.

» Still in the case Q, =0, this is going to be generalised [Bocquet at al., 2016] in the
following in several ways and for degenerate Pg required to connect to reduced-order
methods such as the ensemble Kalman filter (EnKF).
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The filter case
Result 1: Bound of the covariance free forecast

» Simple inequality in the set of the semi-definite symmetric matrices

Pi <My oPoMT o+ =, (11)

where .
Z0=0 andfork>1 ==Y My,QM, (12)

=1

is known as the controllability matrix [Jazwinski, 1970].
» In the absence of model noise (Qy = 0 for the rest of this talk), it reads
Py < MyoPoMjo. (13)
Assuming the dynamics is non-singular
Im(Px) = My.o (Im(Pg)). (14)
If ng is the dimension of the unstable-neutral subspace, it can further be shown that

klim rank(P ) < min {rank(Pg),no} . (15)
—300
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Theoretical results for linear dynamical systems [ERERIISEES

Result 2: Collapse onto the unstable subspace

» Let G,-k, for i=1,...,n denote the eigenvalues of P, ordered as crlk > sz... > 6,’,‘. We

can show that
of < ajexp (2k/l,-k> (16)

where k)Lik is a log-singular value of M.g and Iimkﬁwli" = A;. This gives an upper
bound for all eigenvalues of P, and a rate of convergence for the n— ny smallest ones.

» If P, is uniformly bounded, it can further be shown that the stable subspace of the
dynamics is asymptotically in the null space of Py, i.e. for any vector uy.g in the stable

subspace
lim [[Pyukol = 0. (17)
k—yoo
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Theoretical results for linear dynamical systems [ERERIISEES

Numerical illustration and verification

(a) Eigenvalues of analysis error covariance matrix
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Linearized Lorenz-95 model
around a Lorenz-95 trajectory.

(a) Evolution
of the eigenvalues of P.

(b) Convergence rate to 0
of the eigenvalues related to
the stable modes.
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U
Result 3: Explicit dependence of P, on Pg

» Using either analytic continuation or the symplectic symmetry of the linear
representation of covariances, we have proven that

T T \1
Py =My oPoM, o <|+ rkMk:OPOMk:O) . (18)
where
k—1 T 1
I'k = IZ Mk:IQ/Mk:I' (19)
=0
» An alternative is
Py =My oPo [1+0,Po] "M, (20)
where
T T
@k = Mk:ol'kMk:O = Z M/;OQIM/;0~ (21)
1=0

is the information matrix, directly related to the observability of the DA system.

» Formulas theoretically enlightening!
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Result 4: Asymptotics of Py
» Questions: Under which conditions does P forget about Py = XOXE? Can we
analytically compute its asymptotics?

» We proposed a sufficient set of conditions

@ Condition 1: Assume the forward Lyapunov vectors at ty associated to the
unstable and neutral directions are the columns of V| g € R"*™_ The condition
reads

rank (XEVJ_O) =np. (22)

@ Condition 2: The model is sufficiently observed so that the unstable and neutral
directions remain under control, that is

UYL TeUy > el (23)

where U is a matrix whose columns are the backward Lyapunov vectors related
to non-negative exponents and € > 0 is a positive number.

@ Condition 3: For any neutral backward Lyapunov vector uj, we have
lim u};l'kuk = oo, (24)
k—oo0

i.e. the neutral modes should be sufficiently observed.
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U
Result 4: Asymptotics of Py

Under these three conditions, we obtain

-1
: T T
klinm{Pk —Uix [U+,krku+~,k] U+,k} =0. (25)
The asymptotic sequence does not depend on Pg, only !

» Peculiar role of the neutral modes (arithmetic convergence).

» Numerical illustration and verification
(b) Universality of

10° T T

Linearized Lorenz-95 model
around a Lorenz-95 trajectory.
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The fiter case
From the degenerate KF to the square-root EnKF

» Normalised anomaly decomposition
Pr =X, X} (26)
» Square-root formulation; right-transform update formula
X = MicoXo |1+ X§©xXo] Py, (27)

where W, is an orthogonal matrix.
» Square-root formulation; left-transform update formula

~1/2
Xy = [|+Mk:oP0ME;ork] Mo XoWy. (28)

» With linear models, Gaussian observation and initial errors, the (square-root)
degenerate KF is equivalent to the square-root EnKF and can serve as a proxy to the
EnKF applied to nonlinear models.
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Theoretical results for linear dynamical systems [ERENSCHIITSREES

Degenerate square root Kalman smoother

Vi Vi
by, O—O—0O0——0O0——@——@---------------mmmmmmmmn
ts o
SAt Vi1 Vi
f % e oO—O0—O0—0—e—@&-----------
g I
SAt Yt Y2
g % mmeemeeeeaneeeae e o—0—Oo0—0—e—=o
78] L2
LAt

» The scheme at a glance, variational correspondence (x = X + Xyw) :

. 1 k+L 5 1 >
J(w) = 3 ) HY/—H/M/;k(ik-i—XkW)HR,‘FE||W||
=k LS+1

» From the Hessian of f
k4L
IN +XE§,{X,{ where ﬁk £ Z M}?kQIMI:kv
I=k+L—5+1
we infer .
Xk+s =Mppsu X <|N +Xfﬁkxk) Wy
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Theoretical results for linear dynamical systems [ERENSCHIITSREES

Degenerate square root Kalman smoother: dependence on Xg

» From the recurrence, we can obtain the explicit expression of the anomalies as a
function of the initial anomalies.

» Left-transform update; if k=pS, p=0,1,...:

1

Xk =My 0Xo [lN +Xgékxo] g

where

p—1

~ T A

0, = Z qu;OQqSMqS:O'
q=0

» Right-transform update; if k =pS, p=0,1,...:

_1
Xy = [|n+Mk:0POME:0rk} " My oXoWy
where
P~
M= ZOMk:qSQGSMk:qS'
q:
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Theoretical results for linear dynamical systems [ERENSCHIITSREES

Degenerate square root Kalman smoother: convergence onto the
unstable-neutral subspace
» The convergence rate of the collapse of P, of the smoother is not expected to be
faster than the filter's: the bounding rate is the same.

» However the accuracy of the smoother for re-analysis is expected to be better which
should impact the asymptotic sequences. Indeed we have, for k =pS, p=0,1,...

k—oo

1
lim {xkf Uk UL ARl wk} =0. (36)

» The only difference is in the observability matrix Fk, for k=pS, p=0,1,...

R k+L-S T L
=T+ Y MM, ] (37)
1=k
which guarantees that
~ -1 -1
(VPR [V A VY B V3 P VAR [V A TP T L (38)
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RLCSEHEINESTER MM EETRGAEINIEISEE M From linear to nonlinear models

From linear to nonlinear models

» Nonlinear model dynamics and nonlinear observation model:

Xy = Mick—1(Xk—-1) s (39)
Yk = K (xk) + v (40)

» Square root degenerate Kalman filter — Square root ensemble Kalman filter (EnKF)

» Square root degenerate Kalman smoother — Iterative ensemble Kalman smoother
(IEnKS)

» The IEnKS follows the square root degenerate Kalman smoother that we inferred
from a variational principle, but from the cost function

— 1 k+L -~ 1
W= Yy Hiodlu R+ Xew)lig, + 5wl (41)
I=k+L-5+1

The this archetype of the so-called four-dimensional EnVar method (4DEnVar) which
avoid the need to use an adjoint model, but with a proper ensemble update, and an
outer loop. The IEnKS is systematically more accurate for smoothing and filtering than
4D-Var, the EnKF, and the EnKS.
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Numerical results for nonlinear systems

© Numerical results for nonlinear systems
@ The Lorenz-95 model
@ Eigenspectrum
o Geometry
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Numerical results for nonlinear systems [ERIENRIEIPALEEEE]

Nonlinear chaotic models: the Lorenz-95 low-order model
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» It represents a mid-latitude zonal circle of the global atmosphere.

» Set of M =40 ordinary differential equations [Lorenz and Emmanuel 1998]:

d()l(i;n = (Xm+1 - Xm—2)Xm—1 —Xxm+F, (42)

where F =8, and the boundary is cyclic.

» Conservative system except for a forcing term F and a dissipation term —xp,.

» Chaotic dynamics, 13 positive and 1 neutral Lyapunov exponents, a doubling time of
about 0.42 time units.
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Numerical results for nonlinear systems [Tt

Spectrum of the analysis error covariance matrix
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» Time-average spectra of P%: A visible transition at r = 15.
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Numerical results for nonlinear systems [ReSNR

Geometry of the anomaly simplex and unstable-neutral subspace

» Anomaly to perturbation:

» Anomaly: v = [X,], with 1 < n < N. Lyapunov vector: ui at ty, 1<p<P.
» Projection of v} onto u}:  |[v7| cos(6,"")
where 6, is the angle between the vectors (recall [[uf || =1.)

» Anomaly to the unstable-neutral subspace:

» Consider the relative position of an anomaly with respect to the unstable-neutral
subspace %y, where %), = Span{u}(,u%,...,uzo

» Square cosine of the angle between the anomaly vZ and % is obtained as

T
cos? (67)= Zcos Z k i . (43)

vzl

» Anomaly simplex to the unstable-neutral subspace:

A complete characterization of the relative orientation can be achieved by a set of
angles, called principal angles, whose number is given by the minimum of the
dimensions of both subspaces. These angles are intrinsic and do not depend on the
parameterization of both subspaces.
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Numerical results for nonlinear systems [ReSNR

Nonlinear chaotic model
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» Average angle (in degrees) between an anomaly (from the ensemble) and the
unstable-neutral subspace as a function of the observation error (EnKF and IEnKS,
Lorenz-95, At =0.05, R =62l N = 20).
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Numerical results for nonlinear systems [ReSNR

Nonlinear chaotic model
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» Average angle (in degrees) between an anomaly (from the ensemble) and the
unstable-neutral subspace as a function of the interval between updates (EnKF and
IEnKS, Lorenz-95, R=10"%1, N = 20).
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Numerical results for nonlinear systems [ReSNR

Nonlinear chaotic model

» Average angle (in degrees) between an anomaly (from the ensemble) and the
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unstable-neutral subspace as a function of the DAW length (IEnKS, Lorenz-95), as well
as the corresponding RMSE of the analysis.
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Numerical results for nonlinear systems [ReSNR

Nonlinear chaotic model
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» Average principle angles (in degrees) between the anomalies simplex and the
unstable-neutral subspace as a function of the angle index (IEnKS, Lorenz-95, S=1,
R =1, N =15) at the end of the DAW (filtering).
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Outline

© Conclusions
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Conclusions

Conclusions

@ We proved that if the models are linear and the initial and observation error
statistics are Gaussian, the (degenerate) KF, or (deterministic) EnKF in this case,
collapse onto the unstable subspace. We provided a rate of convergence.

@ We showed that under specific observability conditions and for Pg of sufficiently
large column space, P, asymptotics is independent from Py and can be computed
analytically.

@ These results can be extrapolated to the case of smoothers.

@ These degenerate KF/KS serve as proxies for the EnKF and the IEnKS (for
filtering and smoothing).

@ We numerically studied the collapse onto the unstable-neutral subspace of those
nonlinear filter/smoother using a geometrical description of the relative position of
the unstable-neutral subspaces with the set of filter anomalies.
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Conclusions

Final word

Thank you for your attention!
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