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1700 kids), 100 nations, 36 km?.
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A BIG picture %

1. Computing the full Bayesian update is very expensive
(MCMC is expensive)

2. Look for a cheap surrogate (linear, quadratic, cubic,...
approx.)

3. Kalman filter is a particular case

4. Do Bayesian update of Polynomial Chaos Coefficients!
(not probability densities!)

5. Consider non-Gaussian cases

L 5™ | Center for Uncertainty
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Setting for the identification process

General idea:
We observe / measure a system, whose structure we know in
principle.
The system behaviour depends on some quantities
(parameters),
which we do not know =- uncertainty.

We model (uncertainty in) our knowledge in a Bayesian setting:

as a probability distribution on the parameters.

We start with what we know a priori, then perform a
measurement.

This gives new information, to update our knowledge
(identification).

Update in probabilistic setting works with conditional

probabilities
= Bayes’s theorem.
_Repeated measurements lead to better identification.
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Mathematical setup

Consider
Aluiq)=f = u=35(fq),

where S is solution operator.
Operator depends on parameters q € Q,
hence state u € U is also function of g:
Measurement operator Y with values in ):

y=Y(qu) = Y(q, S(f; q)).

Examples of measurements:
= [, u(w, X)dx, or u in few points

4™ | Center for Uncertainty
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Inverse problem <

For given f, measurement y is just a function of g.
This function is usually not invertible = ill-posed problem,
measurement y does not contain enough information.
In Bayesian framework state of knowledge modelled in a
probabilistic way,
parameters q are uncertain, and assumed as random.
Bayesian setting allows updating / sharpening of information
about g when measurement is performed.
The problem of updating distribution—state of knowledge of g
becomes well-posed.
Can be applied successively, each new measurement y and
forcing f —may also be uncertain—will provide new
information.

N
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Conditional probability and expectation

With state u a RV, the quantity to be measured

y(w) = Y(q(w), u(w)))

is also uncertain, a random variable.
Noisy data: y + ¢(w), where y is the “true” value and a random
error e.
Forecast of the measurement: z(w) = y(w) + e(w).
Classically, Bayes’s theorem gives conditional probability

(i) = Ty 2 Pa) - (ormo(qlz) = P52

Pq(q))

expectation with this posterior measure is conditional
expectation. Kolmogorov starts from conditional expectation
E(:[M),
from this conditional probability via P(lg|M;) = E (x/,|M).

1~ | Center for Uncertainty
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Conditional expectation

The conditional expectation is defined as
orthogonal projection onto the closed subspace Lx(£2,P, 0(2)):

E(qlo(2)) == P2,.q = argminaeLz(Q,P,a(z)) g — éHi

The subspace 2, := Ly(£2,P,o(z2)) represents the available
information.

The update, also called the assimilated value
Ja(w) = Po..q = E(q|o(2)),
and represents new state of knowledge after the measurement.
Doob-Dynkin: 2, ={p € 2 : ¢ = ¢ 0 2z, p measurable}.

2, i | Center for Uncertainty
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Polynomial Chaos Expansion (Norbert Wiener, 1938)

Multivariate Hermite polynomials were used to approximate
random fields/stochastic processes with Gaussian random

variables. According to Cameron and Martin theorem PCE

expansion converges in the L, sense.

Let Y(x,0), 0 = (61, ...,0p,...), is approximated:

(m+p)!
= 2 HO)Ys(0, |Tmpl =
BETm,p o

Hz(0) =TT+ hs, (0k).

Ys(x) = gl/Hﬁ Y(x,60)P(do).

Center for Uncertainty
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Numerical computation of NLBU

Look for ¢ such that g(§) = ¢(z(€)), z(¢) = y(§) + e(w):

Q= Z gan)a(Z(f)) (1)

acJp

and minimize ||q(¢) — 3(z2(¢))||?, where &, are polynomials
(e.g. Hermite, Laguerre, Chebyshev or something else). Taking
derivatives with respect to ¢,:

0
Opq

(a(€) — ¢(2(€)), a(€) = #(2(€)) =0 YaeTp (2)

Inserting representation for 3, obtain

Center for Uncertainty
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Numerical computation of NLBU

%E (qQ(g) —2) qpsds(2)+ > S%’SOWCDL?(Z)(DV(Z))
« Beg Bred
= 2E (q%(z) + Z 90/34)5(2)%(2))
BeJ

2 (Z E[05(2)0a(2)] 95 E[qcba(z)]) —0 VacJ
Beg

E[®5(2)®a(2)] v5 = E[q®a(2)]
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Numerical computation of NLBU

Now, rewriting the last sum in a matrix form, obtain the linear
system of equations (=: A) to compute coefficients ¢g:

E [0 (2(£))Ps(2(€))] oo | = | Ela©oazoN |

where «, g € J, Ais of size |J]| x |J]|.

Jl aeals
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Numerical computation of NLBU

Using the same quadrature rule of order g for each element of
A, we can write

NA

A=E|07,(2(0)0s,(2()T] = > whoy,(2)05.(2)", G)
i=1

where (w/ A ¢) are welghts and quadrature points, z; := z(¢&;)
and ¢ () := (...94(2(&))....)T is a vector of length | 7,|.
Nb
b=E[q()0s,(2()] ~ > wlq(&)®,(2), (4

i=1

where ¢ 7 (2(&))) :== (..., Pa(2(&))), ...), @ € T

~
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Numerical computation of NLBU

We can write the Eqg. 15 with the right-hand side in Eq. 4 in the
compact form:

: wgq(&o)
[®4] [diag(...w/ )] [®a]" | w5 | =[] (5)
: W,[\)/b q(&nn)

[®4] € RTXN [diag(...wA...)] € RV*N [@,] € RT2XN°,

[Wo q(&o).--w bq(be)] € RN
Solving Eq. 5, obtain vector of coefficients (...@5...)7 for all 5.
Finally, the assimilated parameter g, will be

9a = qr + (V) — &(2), (6)
2(§) = y(€) +e(w), ¢ = Xy, vo®s(2(5))

alllise Ellall deals
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Example 1: ¢ does not exist in the Hermite basis

Assume z(¢) = ¢ and g(¢) = ¢2. The normalized PCE
coefficients are (1,0,1,0)

(€2 =1+ Ho(€) + 0+ Hi(€) + 1 Ha(€) +0 - Hs(€))

and (0,3,0,1)

(€8 =0 Ho(€) + 3 Hi(€) + 0 Ha(€) +1- Ha(€)).

For such data the mapping ¢ does not exist. The matrix A is
close to singular.

Support of Hermite polynomials (used for Gaussian RVs) is
(—00, 00).

Center for Uncertainty
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Example 2: ¢ does exist in the Laguerre basis

Assume z(¢) = €2 and q(¢) = €3,

The normalized gPCE coefficients are (2, —4,2,0) and
(6,—18,18, —6).

For such data the mapping mapping ¢ of order 8 and higher
produces a very accurate result.

Support of Laguerre polynomials (used for Gamma RVs) is
[0, 00).

Center for Uncertainty
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Lorenz 1963

Is a system of ODEs. Has chaotic solutions for certain
parameter values and initial conditions.

X =o(w)(y —x)
y=x(pw)—2) =y
z=xy — B(w)z

Initial state qo(w) = (Xo(w), Yo(w), Zo(w)) are uncertain.

Solving in fy, t, ..., tig, Noisy Measur. — UPDATE, solving in
t1, to, ..., bog, Noisy Measur. — UPDATE,...

Jl aeals
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pso0(X)

) /
0 10 20 30 40 50 60 70 80 90
time (days)

Trajectories of x,y and z in time. After each update (new
information coming) the uncertainty drops. (O. Pajonk)
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Lorenz-84 Problem

intenaity of conweotive moton
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Figure : Partial state trajectory with uncertainty and three updates
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Lorenz-84 Problem
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Figure : NLBU: Linear measurement (x(t), y(t), z(t)): prior and
posterior after one update
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Lorenz-84 Problem
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Figure : Linear measurement: Comparison posterior for LBU and
NLBU after second update
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Lorenz-84 Problem
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Figure : Quadratic measurement (x(t)2, y(t)?, z(t)?): Comparison of
a priori and a posterior for NLBU
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Example 4: 1D elliptic PDE with uncertain coeffs

Taken from Stochastic Galerkin Library (sglib), by Elmar Zander
(TU Braunschweig)

=V - (k(X,)VU(x, £)) = f(x,€), x€[0,1]

Measurements are taken at x; = 0.2, and x> = 0.8. The means
are y(x1) = 10, y(x2) = 5 and the variances are 0.5 and 1.5
correspondingly.

Center for Uncertainty
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Example 4: updating of the solution u

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure : Original and updated solutions, mean value plus/minus 1,2,3
standard deviations

See more in sglib by Elmar Zander
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Example 4: Updating of the parameter

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure : Original and updated parameter q.

See more in sglib by Elmar Zander
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Conclusion about NLBU

v

+ Step 1. Introduced a way to derive MMSE ¢ (as a linear,
quadratic, cubic etc approximation, i. e. compute
conditional expectation of g, given measurement Y.

» Step 2. Apply ¢ to identify parameter g

+ All ingredients can be given as gPC.

+ we apply it to solve inverse problems (ODEs and PDEs).
- Stochastic dimension grows up very fast.

v

v

v
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