

NON-LINEAR APPROXIMATION OF BAYESIAN UPDATE

Alexander Litvinenko¹, Hermann G. Matthies², Elmar Zander²

جامعة الملك عبد الله
للعلوم والتكنولوجيا
King Abdullah University of
Science and Technology

Center for Uncertainty
Quantification

<http://sri-uq.kaust.edu.sa/>

¹Extreme Computing Research Center, KAUST,

²Institute of Scientific Computing, TU Braunschweig, Brunswick, Germany

Figure : KAUST campus, 7 years old, approx. 7000 people (include 1700 kids), 100 nations, 36 km².

Advances in Uncertainty Quantification Methods, Algorithms and Applications (UQAW 2015)

January 6 – 9, 2015

9:00 a.m. – 5:00 p.m.

Level 0 auditorium, between Al-Jazri and
Al-Kindi (buildings 4 and 5)

WORKSHOP TOPICS

- 1- Uncertainty Quantification Methods and Algorithms
- 2- Verification and Validation
- 3- Experimental Design
- 4- Applications to Problems in Computational Science, Engineering, Networks and the Environment

ORGANIZERS

RAUL TEMPONE

Director, Center for Uncertainty Quantification
in Computational Science & Engineering.
Associate Professor, Computer, Electrical, and
Mathematical Sciences and Engineering
Division, KAUST

OMAR KNIO

Deputy Director, Center for Uncertainty
Quantification in Computational Science &
Engineering. Professor, Computer, Electrical and
Mathematical Sciences and Engineering
Division, KAUST

For more information contact:

<http://sri-uq.kaust.edu.sa>
Raul.Tempone@kaust.edu.sa; Omar.Knio@kaust.edu.sa
Alexander.Litvinenko@kaust.edu.sa

1. Computing the full Bayesian update is very expensive (MCMC is expensive)
2. Look for a cheap surrogate (linear, quadratic, cubic,... approx.)
3. Kalman filter is a particular case
4. Do Bayesian update of Polynomial Chaos Coefficients! (not probability densities!)
5. Consider non-Gaussian cases

1. O. Pajonk, B. V. Rosic, A. Litvinenko, and H. G. Matthies, A Deterministic Filter for Non-Gaussian Bayesian Estimation, *Physica D: Nonlinear Phenomena*, Vol. 241(7), pp. 775-788, 2012.
2. B. V. Rosic, A. Litvinenko, O. Pajonk and H. G. Matthies, Sampling Free Linear Bayesian Update of Polynomial Chaos Representations, *J. of Comput. Physics*, Vol. 231(17), 2012 , pp 5761-5787
3. A. Litvinenko and H. G. Matthies, Inverse problems and uncertainty quantification
<http://arxiv.org/abs/1312.5048>, 2013
4. H. G. Matthies, E. Zander, B.V. Rosic, A. Litvinenko, Parameter estimation via conditional expectation - A Bayesian Inversion, accepted to AMOS-D-16-00015, 2016.
5. H. G. Matthies, E. Zander, B.V. Rosic, A. Litvinenko, Bayesian parameter estimation via filtering and functional approximation, *Tehnicki vjesnik* 23, 1(2016), 1-17.

General idea:

We observe / measure a system, whose structure we know in principle.

The system behaviour depends on some quantities (parameters),

which we do not know \Rightarrow uncertainty.

We model (uncertainty in) our knowledge in a Bayesian setting:
as a probability distribution on the parameters.

We start with what we know a priori, then perform a measurement.

This gives new information, to update our knowledge (identification).

Update in probabilistic setting works with conditional probabilities
 \Rightarrow Bayes's theorem.

Repeated measurements lead to better identification.

Consider

$$A(u; q) = f \quad \Rightarrow \quad u = S(f; q),$$

where S is solution operator.

Operator depends on **parameters** $q \in \mathcal{Q}$,
hence state $u \in \mathcal{U}$ is also function of q :

Measurement operator Y with values in \mathcal{Y} :

$$y = Y(q; u) = Y(q, S(f; q)).$$

Examples of measurements:

$$y(\omega) = \int_{\mathcal{D}_0} u(\omega, x) dx, \text{ or } u \text{ in few points}$$

For given f , measurement y is just a function of q .

This function is usually **not invertible** \Rightarrow **ill-posed** problem,
measurement y does **not** contain **enough information**.

In **Bayesian** framework state of knowledge **modelled** in a
probabilistic way,

parameters q are **uncertain**, and **assumed** as **random**.

Bayesian setting allows **updating / sharpening** of **information**
about q when measurement is performed.

The problem of updating **distribution—state of knowledge** of q
becomes **well-posed**.

Can be applied **successively**, each new measurement y and
forcing f —may also be uncertain—will provide **new**
information.

With state u a RV, the quantity to be measured

$$y(\omega) = Y(q(\omega), u(\omega)))$$

is also **uncertain**, a **random variable**.

Noisy data: $\hat{y} + \epsilon(\omega)$, where \hat{y} is the “true” value and a **random error** ϵ .

Forecast of the measurement: $z(\omega) = y(\omega) + \epsilon(\omega)$.

Classically, **Bayes's theorem** gives **conditional probability**

$$\mathbb{P}(I_q|M_z) = \frac{\mathbb{P}(M_z|I_q)}{\mathbb{P}(M_z)} \mathbb{P}(I_q) \quad (\text{or } \pi_q(q|z) = \frac{p(z|q)}{Z_s} p_q(q))$$

expectation with this posterior measure is **conditional expectation**. **Kolmogorov** starts from **conditional expectation** $\mathbb{E}(\cdot|M_z)$,

from this **conditional probability** via $\mathbb{P}(I_q|M_z) = \mathbb{E}(\chi_{I_q}|M_z)$.

The **conditional expectation** is **defined** as **orthogonal projection** onto the closed **subspace** $L_2(\Omega, \mathbb{P}, \sigma(z))$:

$$\mathbb{E}(q|\sigma(z)) := P_{\mathcal{Q}_\infty} q = \operatorname{argmin}_{\tilde{q} \in L_2(\Omega, \mathbb{P}, \sigma(z))} \|q - \tilde{q}\|_{L_2}^2$$

The subspace $\mathcal{Q}_\infty := L_2(\Omega, \mathbb{P}, \sigma(z))$ represents the **available** information.

The **update**, also called the **assimilated** value

$$q_a(\omega) := P_{\mathcal{Q}_\infty} q = \mathbb{E}(q|\sigma(z)),$$

and represents **new state** of knowledge **after** the measurement.

Doob-Dynkin: $\mathcal{Q}_\infty = \{\varphi \in \mathcal{Q} : \varphi = \phi \circ z, \phi \text{ measurable}\}.$

Multivariate Hermite polynomials were used to approximate random fields/stochastic processes with Gaussian random variables. According to Cameron and Martin theorem PCE expansion converges in the L_2 sense.

Let $Y(x, \theta)$, $\theta = (\theta_1, \dots, \theta_M, \dots)$, is approximated:

$$Y(x, \theta) = \sum_{\beta \in \mathcal{J}_{m,p}} H_{\beta}(\theta) Y_{\beta}(x), \quad |\mathcal{J}_{m,p}| = \frac{(m+p)!}{m!p!},$$

$$H_{\beta}(\theta) = \prod_{k=1}^M h_{\beta_k}(\theta_k),$$

$$Y_{\beta}(x) = \frac{1}{\beta!} \int_{\Theta} H_{\beta}(\theta) Y(x, \theta) \mathbb{P}(d\theta).$$

$$Y_{\beta}(x) \approx \frac{1}{\beta!} \sum_{i=1}^{N_q} H_{\beta}(\theta_i) Y(x, \theta_i) w_i.$$

Look for φ such that $q(\xi) = \varphi(z(\xi))$, $z(\xi) = y(\xi) + \varepsilon(\omega)$:

$$\varphi \approx \tilde{\varphi} = \sum_{\alpha \in \mathcal{J}_p} \varphi_\alpha \Phi_\alpha(z(\xi)) \quad (1)$$

and minimize $\|q(\xi) - \tilde{\varphi}(z(\xi))\|^2$, where Φ_α are polynomials (e.g. Hermite, Laguerre, Chebyshev or something else). Taking derivatives with respect to φ_α :

$$\frac{\partial}{\partial \varphi_\alpha} \langle q(\xi) - \tilde{\varphi}(z(\xi)), q(\xi) - \tilde{\varphi}(z(\xi)) \rangle = 0 \quad \forall \alpha \in \mathcal{J}_p \quad (2)$$

Inserting representation for $\tilde{\varphi}$, obtain

$$\begin{aligned}
 & \frac{\partial}{\partial \varphi_\alpha} \mathbb{E} \left(q^2(\xi) - 2 \sum_{\beta \in \mathcal{J}} q \varphi_\beta \Phi_\beta(z) + \sum_{\beta, \gamma \in \mathcal{J}} \varphi_\beta \varphi_\gamma \Phi_\beta(z) \Phi_\gamma(z) \right) \\
 &= 2 \mathbb{E} \left(-q \Phi_\alpha(z) + \sum_{\beta \in \mathcal{J}} \varphi_\beta \Phi_\beta(z) \Phi_\alpha(z) \right) \\
 &= 2 \left(\sum_{\beta \in \mathcal{J}} \mathbb{E} [\Phi_\beta(z) \Phi_\alpha(z)] \varphi_\beta - \mathbb{E} [q \Phi_\alpha(z)] \right) = 0 \quad \forall \alpha \in \mathcal{J} \\
 & \mathbb{E} [\Phi_\beta(z) \Phi_\alpha(z)] \varphi_\beta = \mathbb{E} [q \Phi_\alpha(z)]
 \end{aligned}$$

Now, rewriting the last sum in a matrix form, obtain the linear system of equations ($=: A$) to compute coefficients φ_β :

$$\begin{pmatrix} \dots & & \dots & & \dots \\ \vdots & \mathbb{E}[\Phi_\alpha(z(\xi))\Phi_\beta(z(\xi))] & \vdots & \varphi_\beta & \vdots \\ \dots & \dots & \dots & \vdots & \vdots \end{pmatrix} = \begin{pmatrix} \mathbb{E}[q(\xi)\Phi_\alpha(z(\xi))] \\ \vdots \\ \vdots \end{pmatrix},$$

where $\alpha, \beta \in \mathcal{J}$, A is of size $|\mathcal{J}| \times |\mathcal{J}|$.

Using the same quadrature rule of order q for each element of A , we can write

$$A = \mathbb{E} \left[\Phi_{\mathcal{J}_\alpha}(z(\xi)) \Phi_{\mathcal{J}_\beta}(z(\xi))^T \right] \approx \sum_{i=1}^{N^A} w_i^A \Phi_{\mathcal{J}_\alpha}(z_i) \Phi_{\mathcal{J}_\beta}(z_i)^T, \quad (3)$$

where (w_i^A, ξ_i) are weights and quadrature points, $z_i := z(\xi_i)$ and $\Phi_{\mathcal{J}_\alpha}(z_i) := (\dots, \Phi_\alpha(z(\xi_i)), \dots)^T$ is a vector of length $|\mathcal{J}_\alpha|$.

$$b = \mathbb{E} [q(\xi) \Phi_{\mathcal{J}_\alpha}(z(\xi))] \approx \sum_{i=1}^{N^b} w_i^b q(\xi_i) \Phi_{\mathcal{J}_\alpha}(z_i), \quad (4)$$

where $\Phi_{\mathcal{J}_\alpha}(z(\xi_i)) := (\dots, \Phi_\alpha(z(\xi_i)), \dots)$, $\alpha \in \mathcal{J}_\alpha$.

We can write the Eq. 15 with the right-hand side in Eq. 4 in the compact form:

$$[\Phi_A] [\text{diag}(\dots w_i^A \dots)] [\Phi_A]^T \begin{pmatrix} \vdots \\ \varphi_\beta \\ \vdots \end{pmatrix} = [\Phi_b] \begin{pmatrix} w_0^b q(\xi_0) \\ \dots \\ w_{N^b}^b q(\xi_{N^b}) \end{pmatrix} \quad (5)$$

$[\Phi_A] \in \mathbb{R}^{\mathcal{J}_\alpha \times N^A}$, $[\text{diag}(\dots w_i^A \dots)] \in \mathbb{R}^{N^A \times N^A}$, $[\Phi_b] \in \mathbb{R}^{\mathcal{J}_\alpha \times N^b}$,
 $[w_0^b q(\xi_0) \dots w_{N^b}^b q(\xi_{N^b})] \in \mathbb{R}^{N^b}$.

Solving Eq. 5, obtain vector of coefficients $(\dots \varphi_\beta \dots)^T$ for all β .
Finally, the assimilated parameter q_a will be

$$q_a = q_f + \tilde{\varphi}(\hat{y}) - \tilde{\varphi}(z), \quad (6)$$

$$z(\xi) = y(\xi) + \varepsilon(\omega), \quad \tilde{\varphi} = \sum_{\beta \in \mathcal{J}_p} \varphi_\beta \Phi_\beta(z(\xi))$$

Assume $z(\xi) = \xi^2$ and $q(\xi) = \xi^3$. The normalized PCE coefficients are $(1, 0, 1, 0)$

$(\xi^2 = 1 \cdot H_0(\xi) + 0 \cdot H_1(\xi) + 1 \cdot H_2(\xi) + 0 \cdot H_3(\xi))$
and $(0, 3, 0, 1)$

$(\xi^3 = 0 \cdot H_0(\xi) + 3 \cdot H_1(\xi) + 0 \cdot H_2(\xi) + 1 \cdot H_3(\xi)).$

For such data the **mapping φ does not exist**. The matrix A is close to singular.

Support of Hermite polynomials (used for Gaussian RVs) is $(-\infty, \infty)$.

Assume $z(\xi) = \xi^2$ and $q(\xi) = \xi^3$.

The normalized gPCE coefficients are $(2, -4, 2, 0)$ and $(6, -18, 18, -6)$.

For such data the **mapping mapping φ of order 8 and higher produces a very accurate result.**

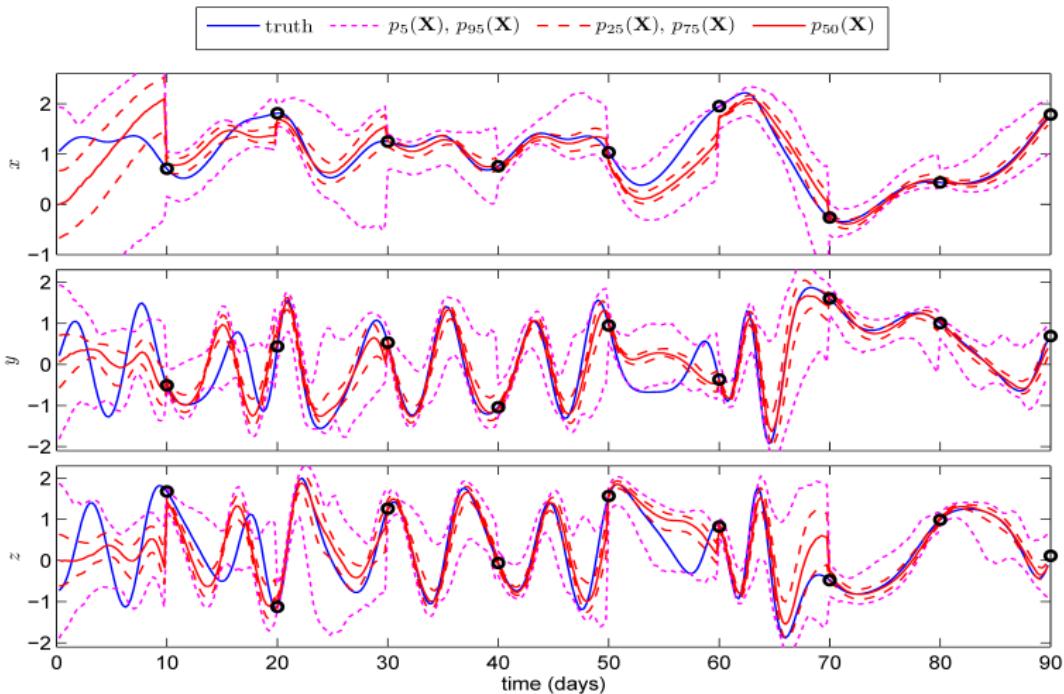
Support of Laguerre polynomials (used for Gamma RVs) is $[0, \infty)$.

Is a system of ODEs. Has chaotic solutions for certain parameter values and initial conditions.

$$\begin{aligned}\dot{x} &= \sigma(\omega)(y - x) \\ \dot{y} &= x(\rho(\omega) - z) - y \\ \dot{z} &= xy - \beta(\omega)z\end{aligned}$$

Initial state $q_0(\omega) = (x_0(\omega), y_0(\omega), z_0(\omega))$ are uncertain.

Solving in t_0, t_1, \dots, t_{10} , Noisy Measur. \rightarrow UPDATE, solving in $t_{11}, t_{12}, \dots, t_{20}$, Noisy Measur. \rightarrow UPDATE,...



Trajectories of x, y and z in time. After each update (new information coming) the uncertainty drops. (O. Pajonk)

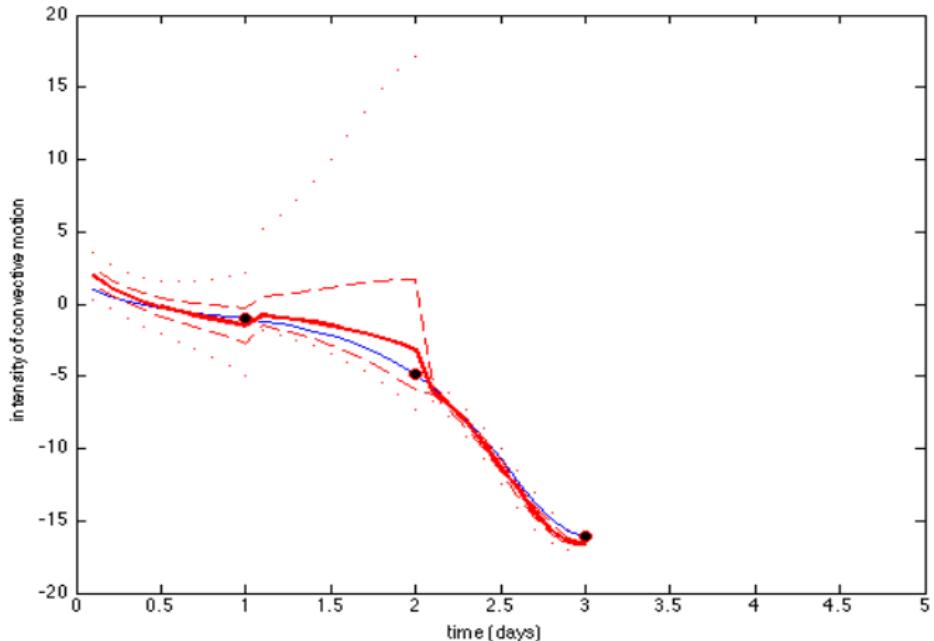


Figure : Partial state trajectory with uncertainty and three updates

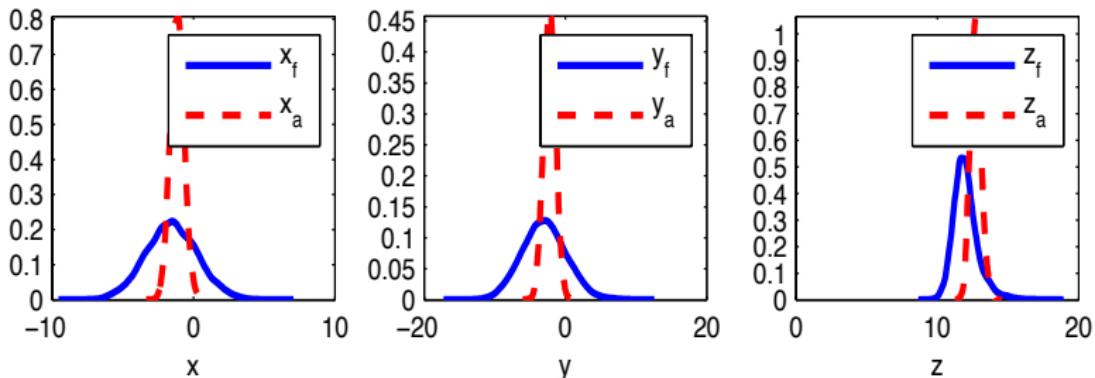


Figure : NLBU: Linear measurement $(x(t), y(t), z(t))$: prior and posterior after one update

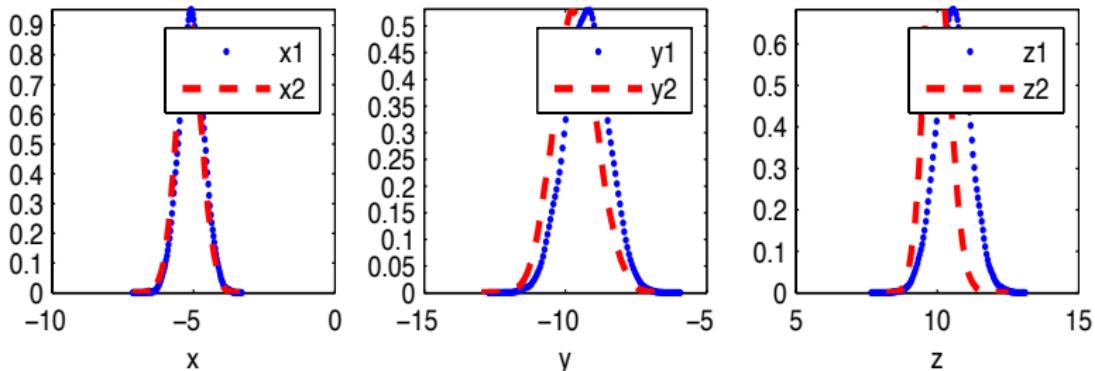


Figure : Linear measurement: Comparison posterior for LBU and NLBU after second update

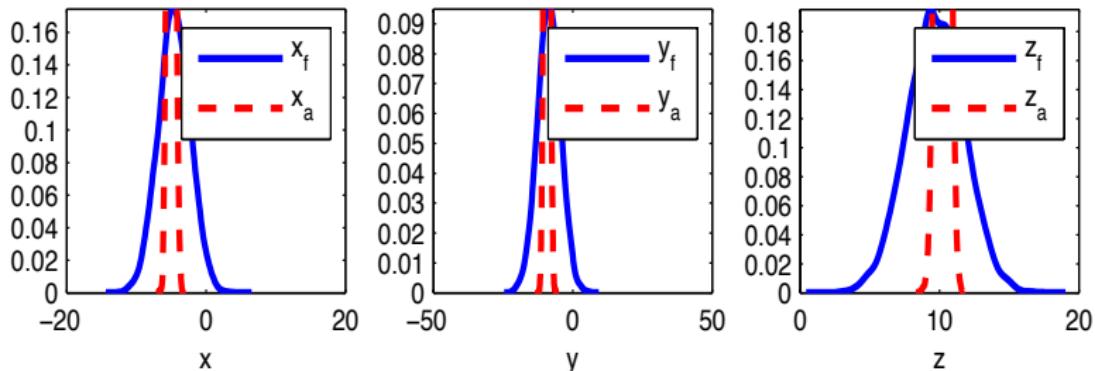


Figure : Quadratic measurement $(x(t)^2, y(t)^2, z(t)^2)$: Comparison of a priori and a posterior for NLBU

Taken from Stochastic Galerkin Library (sglib), by Elmar Zander (TU Braunschweig)

$$-\nabla \cdot (\kappa(x, \xi) \nabla u(x, \xi)) = f(x, \xi), \quad x \in [0, 1]$$

Measurements are taken at $x_1 = 0.2$, and $x_2 = 0.8$. The means are $\bar{y}(x_1) = 10$, $\bar{y}(x_2) = 5$ and the variances are 0.5 and 1.5 correspondingly.

Example 4: updating of the solution u

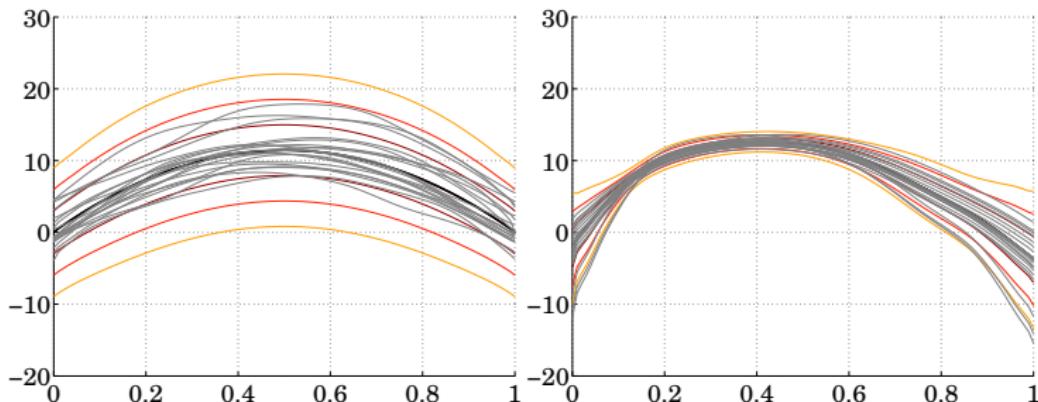


Figure : Original and updated solutions, mean value plus/minus 1,2,3 standard deviations

See more in [sglib](#) by Elmar Zander

Example 4: Updating of the parameter

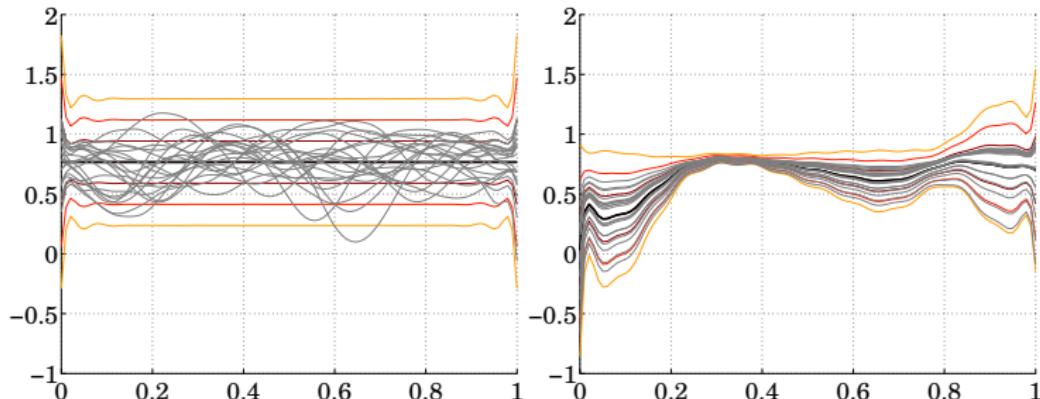


Figure : Original and updated parameter q .

See more in [sglib](#) by Elmar Zander

- ▶ + Step 1. Introduced a way to derive MMSE φ (as a linear, quadratic, cubic etc approximation, i. e. compute conditional expectation of q , given measurement Y).
- ▶ Step 2. Apply φ to identify parameter q
- ▶ + All ingredients can be given as gPC.
- ▶ + we apply it to solve inverse problems (ODEs and PDEs).
- ▶ - Stochastic dimension grows up very fast.

I used a Matlab toolbox for stochastic Galerkin methods (sglib)

<https://github.com/ezander/sglib>

Alexander Litvinenko and his research work was supported by
the King Abdullah University of Science and Technology
(KAUST), SRI-UQ and ECRC centers.

1. Bojana Rosic, Jan Sykora, Oliver Pajonk, Anna Kucerova and Hermann G. Matthies, Comparison of Numerical Approaches to Bayesian Updating, report on www.wire.tu-bs.de, 2014
2. A. Litvinenko and H. G. Matthies, *Inverse problems and uncertainty quantification*
<http://arxiv.org/abs/1312.5048>, 2013
3. L. Giraldi, A. Litvinenko, D. Liu, H. G. Matthies, A. Nouy, *To be or not to be intrusive? The solution of parametric and stochastic equations - the "plain vanilla" Galerkin case*,
<http://arxiv.org/abs/1309.1617>, 2013
4. O. Pajonk, B. V. Rosic, A. Litvinenko, and H. G. Matthies, *A Deterministic Filter for Non-Gaussian Bayesian Estimation*, *Physica D: Nonlinear Phenomena*, Vol. 241(7), pp. 775-788, 2012.
5. B. V. Rosic, A. Litvinenko, O. Pajonk and H. G. Matthies, *Sampling Free Linear Bayesian Update of Polynomial Chaos Representations*, *J. of Comput. Physics*, Vol. 283, pp. 1-15, 2015.

1. *PCE of random coefficients and the solution of stochastic partial differential equations in the Tensor Train format*, S. Dolgov, B. N. Khoromskij, A. Litvinenko, H. G. Matthies, 2015/3/11, arXiv:1503.03210
2. *Efficient analysis of high dimensional data in tensor formats*, M. Espig, W. Hackbusch, A. Litvinenko, H.G. Matthies, E. Zander Sparse Grids and Applications, 31-56, 40, 2013
3. *Application of hierarchical matrices for computing the Karhunen-Loeve expansion*, B.N. Khoromskij, A. Litvinenko, H.G. Matthies, Computing 84 (1-2), 49-67, 31, 2009
4. *Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats*, M. Espig, W. Hackbusch, A. Litvinenko, H.G. Matthies, P. Waehnert, Comp. & Math. with Appl. 67 (4), 818-829, 2012
5. *Numerical Methods for Uncertainty Quantification and Bayesian Update in Aerodynamics*, A. Litvinenko, H. G. Matthies, Book "Management and Minimisation of Uncertainties and Errors in Numerical Aerodynamics" pp 265-282, 2013