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KAUST

Figure : KAUST campus, 7 years old, approx. 7000 people (include
1700 kids), 100 nations, 36 km2.
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A BIG picture

1. Computing the full Bayesian update is very expensive
(MCMC is expensive)

2. Look for a cheap surrogate (linear, quadratic, cubic,...
approx.)

3. Kalman filter is a particular case
4. Do Bayesian update of Polynomial Chaos Coefficients!

(not probability densities!)
5. Consider non-Gaussian cases
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Setting for the identification process

General idea:
We observe / measure a system, whose structure we know in

principle.
The system behaviour depends on some quantities

(parameters),
which we do not know⇒ uncertainty.

We model (uncertainty in) our knowledge in a Bayesian setting:
as a probability distribution on the parameters.

We start with what we know a priori, then perform a
measurement.

This gives new information, to update our knowledge
(identification).

Update in probabilistic setting works with conditional
probabilities

⇒ Bayes’s theorem.
Repeated measurements lead to better identification.
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Mathematical setup

Consider

A(u; q) = f ⇒ u = S(f ; q),

where S is solution operator.
Operator depends on parameters q ∈ Q,
hence state u ∈ U is also function of q:

Measurement operator Y with values in Y:

y = Y (q; u) = Y (q,S(f ; q)).

Examples of measurements:
y(ω) =

∫
D0

u(ω, x)dx , or u in few points
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Inverse problem

For given f , measurement y is just a function of q.
This function is usually not invertible⇒ ill-posed problem,

measurement y does not contain enough information.
In Bayesian framework state of knowledge modelled in a

probabilistic way,
parameters q are uncertain, and assumed as random.

Bayesian setting allows updating / sharpening of information
about q when measurement is performed.

The problem of updating distribution—state of knowledge of q
becomes well-posed.

Can be applied successively, each new measurement y and
forcing f —may also be uncertain—will provide new

information.
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Conditional probability and expectation

With state u a RV, the quantity to be measured

y(ω) = Y (q(ω),u(ω)))

is also uncertain, a random variable.
Noisy data: ŷ + ε(ω), where ŷ is the “true” value and a random

error ε.
Forecast of the measurement: z(ω) = y(ω) + ε(ω).

Classically, Bayes’s theorem gives conditional probability

P(Iq|Mz) =
P(Mz |Iq)

P(Mz)
P(Iq) (orπq(q|z) =

p(z|q)

Zs
pq(q))

expectation with this posterior measure is conditional
expectation. Kolmogorov starts from conditional expectation

E (·|Mz),
from this conditional probability via P(Iq|Mz) = E

(
χIq |Mz

)
.

Center for Uncertainty
Quantification

Center for Uncertainty
Quantification

Center for Uncertainty Quantification Logo Lock-up 

10 / 31



4*

Conditional expectation

The conditional expectation is defined as
orthogonal projection onto the closed subspace L2(Ω,P, σ(z)):

E(q|σ(z)) := PQ∞q = argminq̃∈L2(Ω,P,σ(z)) ‖q − q̃‖2L2

The subspace Q∞ := L2(Ω,P, σ(z)) represents the available
information.

The update, also called the assimilated value
qa(ω) := PQ∞q = E(q|σ(z)),

and represents new state of knowledge after the measurement.
Doob-Dynkin: Q∞ = {ϕ ∈ Q : ϕ = φ ◦ z, φmeasurable}.
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Polynomial Chaos Expansion (Norbert Wiener, 1938)

Multivariate Hermite polynomials were used to approximate
random fields/stochastic processes with Gaussian random
variables. According to Cameron and Martin theorem PCE
expansion converges in the L2 sense.
Let Y (x ,θ), θ = (θ1, ..., θM , ...), is approximated:

Y (x ,θ) =
∑

β∈Jm,p

Hβ(θ)Yβ(x), |Jm,p| =
(m + p)!

m!p!
,

Hβ(θ) =
∏M

k=1 hβk (θk ),

Yβ(x) =
1
β!

∫
Θ

Hβ(θ)Y (x ,θ)P(dθ).

Yβ(x) ≈ 1
β!

Nq∑
i=1

Hβ(θi)Y (x ,θi)wi .
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Numerical computation of NLBU

Look for ϕ such that q(ξ) = ϕ(z(ξ)), z(ξ) = y(ξ) + ε(ω):

ϕ ≈ ϕ̃ =
∑
α∈Jp

ϕαΦα(z(ξ)) (1)

and minimize ‖q(ξ)− ϕ̃(z(ξ))‖2, where Φα are polynomials
(e.g. Hermite, Laguerre, Chebyshev or something else). Taking
derivatives with respect to ϕα:

∂

∂ϕα
〈q(ξ)− ϕ̃(z(ξ)),q(ξ)− ϕ̃(z(ξ))〉 = 0 ∀α ∈ Jp (2)

Inserting representation for ϕ̃, obtain
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Numerical computation of NLBU

∂

∂ϕα
E

q2(ξ)− 2
∑
β∈J

qϕβΦβ(z) +
∑
β,γ∈J

ϕβϕγΦβ(z)Φγ(z)


= 2E

−qΦα(z) +
∑
β∈J

ϕβΦβ(z)Φα(z)


= 2

∑
β∈J

E [Φβ(z)Φα(z)]ϕβ − E [qΦα(z)]

 = 0 ∀α ∈ J

E [Φβ(z)Φα(z)]ϕβ = E [qΦα(z)]
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Numerical computation of NLBU

Now, rewriting the last sum in a matrix form, obtain the linear
system of equations (=: A) to compute coefficients ϕβ: ... ... ...

... E [Φα(z(ξ))Φβ(z(ξ))]
...

... ... ...




...
ϕβ

...

 =


...

E [q(ξ)Φα(z(ξ))]
...

 ,

where α, β ∈ J , A is of size |J | × |J |.
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Numerical computation of NLBU

Using the same quadrature rule of order q for each element of
A, we can write

A = E
[
ΦJα(z(ξ))ΦJβ (z(ξ))T

]
≈

NA∑
i=1

wA
i ΦJα(zi)ΦJβ (zi)

T , (3)

where (wA
i , ξi) are weights and quadrature points, zi := z(ξi)

and ΦJα(zi) := (...Φα(z(ξi))....)T is a vector of length |Jα|.

b = E [q(ξ)ΦJα(z(ξ))] ≈
Nb∑
i=1

wb
i q(ξi)ΦJα(zi), (4)

where ΦJα(z(ξi)) := (...,Φα(z(ξi)), ...), α ∈ Jα.
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Numerical computation of NLBU

We can write the Eq. 15 with the right-hand side in Eq. 4 in the
compact form:

[ΦA] [diag(...wA
i ...)] [ΦA]T


...
ϕβ
...

 = [Φb]

 wb
0 q(ξ0)
...

wb
Nbq(ξNb )

 (5)

[ΦA] ∈ RJα×NA
, [diag(...wA

i ...)] ∈ RNA×NA
, [Φb] ∈ RJα×Nb

,
[wb

0 q(ξ0)...wb
Nbq(ξNb )] ∈ RNb

.
Solving Eq. 5, obtain vector of coefficients (...ϕβ...)

T for all β.
Finally, the assimilated parameter qa will be

qa = qf + ϕ̃(ŷ)− ϕ̃(z), (6)

z(ξ) = y(ξ) + ε(ω), ϕ̃ =
∑

β∈Jp
ϕβΦβ(z(ξ))
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Example 1: ϕ does not exist in the Hermite basis

Assume z(ξ) = ξ2 and q(ξ) = ξ3. The normalized PCE
coefficients are (1,0,1,0)
(ξ2 = 1 · H0(ξ) + 0 · H1(ξ) + 1 · H2(ξ) + 0 · H3(ξ))
and (0,3,0,1)
(ξ3 = 0 · H0(ξ) + 3 · H1(ξ) + 0 · H2(ξ) + 1 · H3(ξ)).
For such data the mapping ϕ does not exist. The matrix A is
close to singular.
Support of Hermite polynomials (used for Gaussian RVs) is
(−∞,∞).
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Example 2: ϕ does exist in the Laguerre basis

Assume z(ξ) = ξ2 and q(ξ) = ξ3.
The normalized gPCE coefficients are (2,−4,2,0) and
(6,−18,18,−6).
For such data the mapping mapping ϕ of order 8 and higher
produces a very accurate result.
Support of Laguerre polynomials (used for Gamma RVs) is
[0,∞).

Center for Uncertainty
Quantification

Center for Uncertainty
Quantification

Center for Uncertainty Quantification Logo Lock-up 

19 / 31



4*

Lorenz 1963

Is a system of ODEs. Has chaotic solutions for certain
parameter values and initial conditions.

ẋ = σ(ω)(y − x)

ẏ = x(ρ(ω)− z)− y
ż = xy − β(ω)z

Initial state q0(ω) = (x0(ω), y0(ω), z0(ω)) are uncertain.

Solving in t0, t1, ..., t10, Noisy Measur. → UPDATE, solving in
t11, t12, ..., t20, Noisy Measur. → UPDATE,...
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Trajectories of x,y and z in time. After each update (new
information coming) the uncertainty drops. (O. Pajonk)
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Lorenz-84 Problem

Figure : Partial state trajectory with uncertainty and three updates
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Lorenz-84 Problem
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Figure : NLBU: Linear measurement (x(t), y(t), z(t)): prior and
posterior after one update
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Lorenz-84 Problem

10 5 0
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

x

 

 
x1
x2

15 10 5
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

y

 

 
y1
y2

5 10 15
0

0.1
0.2
0.3
0.4
0.5
0.6

z

 

 
z1
z2

Figure : Linear measurement: Comparison posterior for LBU and
NLBU after second update
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Lorenz-84 Problem
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Figure : Quadratic measurement (x(t)2, y(t)2, z(t)2): Comparison of
a priori and a posterior for NLBU
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Example 4: 1D elliptic PDE with uncertain coeffs

Taken from Stochastic Galerkin Library (sglib), by Elmar Zander
(TU Braunschweig)

−∇ · (κ(x , ξ)∇u(x , ξ)) = f (x , ξ), x ∈ [0,1]

Measurements are taken at x1 = 0.2, and x2 = 0.8. The means
are y(x1) = 10, y(x2) = 5 and the variances are 0.5 and 1.5
correspondingly.
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Example 4: updating of the solution u
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Figure : Original and updated solutions, mean value plus/minus 1,2,3
standard deviations

See more in sglib by Elmar Zander
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Example 4: Updating of the parameter
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Figure : Original and updated parameter q.

See more in sglib by Elmar Zander
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Conclusion about NLBU

I + Step 1. Introduced a way to derive MMSE ϕ (as a linear,
quadratic, cubic etc approximation, i. e. compute
conditional expectation of q, given measurement Y .

I Step 2. Apply ϕ to identify parameter q
I + All ingredients can be given as gPC.
I + we apply it to solve inverse problems (ODEs and PDEs).
I - Stochastic dimension grows up very fast.
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