

An iterative ensemble Kalman filter in presence of additive model error

Marc Bocquet¹, Pavel Sakov², Jean-Matthieu Haussaire¹

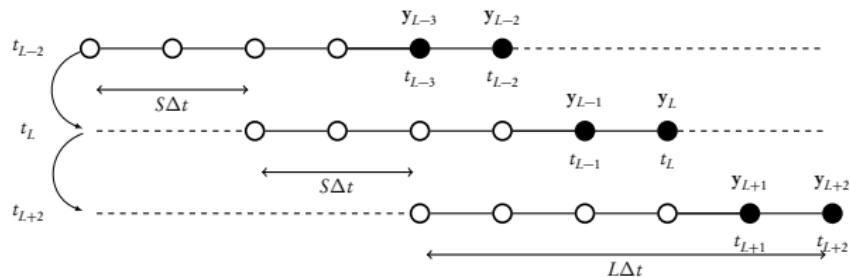
(1) CEREA, joint lab École des Ponts ParisTech and EdF R&D, Université Paris-Est, France
Institut Pierre-Simon Laplace

(2) Environment and Research Division, Bureau of Meteorology, Melbourne, Australia

(marc.bocquet@enpc.fr)

What this talk is about ...

- ▶ Iterative ensemble Kalman smoother (IEnKS): exemplar of nonlinear four-dimensional EnVar methods.
 - ▶ It propagates the error statistics from one cycle to the next with the ensemble (errors of the day).
 - ▶ It performs a 4D-Var analysis at each cycle (within the ensemble subspace).
- ▶ Typical cycling ($L = 6$, $S = 2$):



Variational analysis in ens. space

→ Posterior ens. generation

→ Ens. forecast

Cost functions

- ▶ General cost function over $[t_1, \dots, t_L]$; weak-constraint formalism:

$$J_L(\mathbf{x}_1, \dots, \mathbf{x}_L) = \|\mathbf{x}_1 - \mathbf{x}_1^f\|_{(\mathbf{P}_1^f)^{-1}}^2 + \sum_{i=1}^L \|\mathbf{y}_i - \mathcal{H}_i(\mathbf{x}_i)\|_{\mathbf{R}_i^{-1}}^2 + \sum_{i=2}^L \|\mathbf{x}_i - \mathcal{M}_i(\mathbf{x}_{i-1})\|_{\mathbf{Q}_i^{-1}}^2.$$

- ▶ Configurations addressed in this talk:

- ▶ The case $L = 1, S = 1$, the so-called iterative ensemble Kalman filter → **IEnKF**:

$$J_L(\mathbf{x}_1, \mathbf{x}_2) = \|\mathbf{x}_1 - \mathbf{x}_1^f\|_{(\mathbf{P}_1^f)^{-1}}^2 + \|\mathbf{y}_2 - \mathcal{H}_2 \circ \mathcal{M}_2(\mathbf{x}_1)\|_{\mathbf{R}_2^{-1}}^2.$$

- ▶ The IEnKF but, now, with additive model error → **IEnKF-Q** :

$$J_L(\mathbf{x}_1, \mathbf{x}_2) = \|\mathbf{x}_1 - \mathbf{x}_1^f\|_{(\mathbf{P}_1^f)^{-1}}^2 + \|\mathbf{y}_2 - \mathcal{H}_2(\mathbf{x}_2)\|_{\mathbf{R}_2^{-1}}^2 + \|\mathbf{x}_2 - \mathcal{M}_2(\mathbf{x}_1)\|_{\mathbf{Q}_2^{-1}}^2.$$

- ▶ The *linearized* case $L+1 = S$ with additive model error, called the asynchronous ensemble Kalman filter → **AEnKF**.

P. SAKOV, J.-M. HAUSSAIRE, AND M. BOCQUET, *An iterative ensemble Kalman filter in presence of additive model error*, Q. J. R. Meteorol. Soc., 0 (2017), pp. 0–0. [Submitted](#)

Outline

1 The iterative ensemble Kalman filter (IEnKF)

2 Theory of the IEnKF-Q

- Formulation
- Decoupling
- Base algorithm

3 Numerics for the IEnKF-Q

4 Asynchronous EnKF with additive model error

5 Conclusions

6 References

Iterative ensemble Kalman filter: a Bayesian standpoint

- ▶ Gaussian assumption for the prior:

$$p(\mathbf{x}_1) = n(\mathbf{x}_1 | \bar{\mathbf{x}}_1, \mathbf{P}_1).$$

- ▶ Forecast under perfect model assumption:

$$p(\mathbf{x}_2 | \mathbf{x}_1) \propto \delta \{ \mathbf{x}_2 - \mathcal{M}_2(\mathbf{x}_1) \}.$$

- ▶ Likelihood used in the analysis:

$$p(\mathbf{y}_2 | \mathbf{x}_2) = n(\mathbf{y}_2 - H_2(\mathbf{x}_2) | \mathbf{0}, \mathbf{R}_2).$$

- ▶ (Full cycle) analysis of the initial condition \mathbf{x}_1 :

$$\begin{aligned} p(\mathbf{x}_1 | \mathbf{y}_2) &\propto p(\mathbf{y}_2 | \mathbf{x}_1) p(\mathbf{x}_1) \\ &\propto p(\mathbf{y}_2 | \mathbf{x}_2 = \mathcal{M}_2(\mathbf{x}_1)) p(\mathbf{x}_1). \end{aligned}$$

- ▶ Analysis (forecast!) of the filtering distribution:

$$\begin{aligned} p(\mathbf{x}_2 | \mathbf{y}_2) &= \int d\mathbf{x}_1 p(\mathbf{x}_2 | \mathbf{x}_1, \mathbf{y}_2) p(\mathbf{x}_1 | \mathbf{y}_2) \\ &= \int d\mathbf{x}_1 \delta \{ \mathbf{x}_2 - \mathcal{M}_2(\mathbf{x}_1) \} p(\mathbf{x}_1 | \mathbf{y}_2). \end{aligned}$$

Iterative ensemble Kalman filter: a variational standpoint

- ▶ Analysis IEnKF cost function in state space $p(\mathbf{x}_1|\mathbf{y}_2) \propto \exp(-\mathcal{J}(\mathbf{x}_1))$:

$$\mathcal{J}(\mathbf{x}_1) = \frac{1}{2} \|\mathbf{y}_2 - \mathcal{H}_2 \circ \mathcal{M}_2(\mathbf{x}_1)\|_{\mathbf{R}_2^{-1}}^2 + \frac{1}{2} \|\mathbf{x}_1 - \bar{\mathbf{x}}_1\|_{\mathbf{P}_1^{-1}}^2.$$

- ▶ Reduced scheme in ensemble subspace, $\mathbf{x}_1 = \bar{\mathbf{x}}_1 + \mathbf{A}_1 \mathbf{w}_1$, where \mathbf{A}_1 is the normalized ensemble anomaly matrix:

$$\widetilde{\mathcal{J}}(\mathbf{w}_1) = \mathcal{J}(\bar{\mathbf{x}}_1 + \mathbf{A}_1 \mathbf{w}_1).$$

- ▶ IEnKF cost function in ensemble space:

$$\widetilde{\mathcal{J}}(\mathbf{w}_1) = \frac{1}{2} \|\mathbf{y}_2 - \mathcal{H}_2 \circ \mathcal{M}_2(\bar{\mathbf{x}}_1 + \mathbf{A}_1 \mathbf{w}_1)\|_{\mathbf{R}_2^{-1}}^2 + \frac{1}{2} \|\mathbf{w}_1\|^2.$$

P. SAKOV, D. S. OLIVER, AND L. BERTINO, *An iterative EnKF for strongly nonlinear systems*, Mon. Wea. Rev., 140 (2012), pp. 1988–2004

M. BOCQUET AND P. SAKOV, *Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems*, Nonlin. Processes Geophys., 19 (2012), pp. 383–399

Iterative ensemble Kalman filter: minimization scheme

- As a variational **reduced** method, one can use Gauss-Newton [Sakov et al., 2012], Levenberg-Marquardt [Bocquet and Sakov, 2012; Chen and Oliver, 2012], etc, minimization schemes (not limited to quasi-Newton).
- Gauss-Newton scheme:

$$\begin{aligned}
 \mathbf{w}_1^{(j+1)} &= \mathbf{w}_1^{(j)} - \widetilde{\mathcal{H}}_{(j)}^{-1} \nabla \widetilde{\mathcal{J}}_{(j)}(\mathbf{w}_1^{(j)}), \\
 \mathbf{x}_1^{(j)} &= \bar{\mathbf{x}}_1 + \mathbf{A}_1 \mathbf{w}_1^{(j)}, \\
 \nabla \widetilde{\mathcal{J}}_{(j)} &= \mathbf{w}_1^{(j)} - \mathbf{Y}_{(j)}^T \mathbf{R}_2^{-1} \left(\mathbf{y}_2 - \mathcal{H}_2 \circ \mathcal{M}_2(\mathbf{x}_1^{(j)}) \right), \\
 \widetilde{\mathcal{H}}_{(j)} &= \mathbf{I}_N + \mathbf{Y}_{(j)}^T \mathbf{R}_2^{-1} \mathbf{Y}_{(j)}, \\
 \mathbf{Y}_{(j)} &= [\mathcal{H}_2 \circ \mathcal{M}_2]_{|\mathbf{x}_1^{(j)}}' \mathbf{A}_1.
 \end{aligned}$$

Iterative ensemble Kalman filter: computing the sensitivities

- ▶ Sensitivities $\mathbf{Y}_{(p)}$ computed by ensemble propagation without TLM and adjoint ([Gu and Oliver, 2007; Liu et al., 2008; Buehner et al., 2010])
- ▶ First alternative [Sakov et al., 2012]: the **transform** scheme. The ensemble is preconditioned before its propagation using the ensemble transform

$$\mathbf{T}_{(j)} = \left(\mathbf{I}_N + \mathbf{Y}_{(j)}^T \mathbf{R}^{-1} \mathbf{Y}_{(j)} \right)^{-1/2},$$

obtained at the previous iteration. The inverse transformation is applied after propagation.

- ▶ Second alternative [Bocquet and Sakov, 2012]: the **bundle** scheme. It simply mimics the action of the tangent linear by finite difference:

$$\mathbf{Y}_{(j)} \approx \frac{1}{\varepsilon} \mathcal{H}_2 \circ \mathcal{M}_2 \left(\mathbf{x}^{(j)} \mathbf{1}^T + \varepsilon \mathbf{A}_1 \right) \left(\mathbf{I}_N - \frac{\mathbf{1} \mathbf{1}^T}{N} \right).$$

Outline

1 The iterative ensemble Kalman filter (IEnKF)

2 Theory of the IEnKF-Q

- Formulation
- Decoupling
- Base algorithm

3 Numerics for the IEnKF-Q

4 Asynchronous EnKF with additive model error

5 Conclusions

6 References

IEnKF-Q: formulation

- ▶ Analysis cost function:

$$J(\mathbf{x}_1, \mathbf{x}_2) = \|\mathbf{x}_1 - \mathbf{x}_1^a\|_{(\mathbf{P}_1^a)^{-1}}^2 + \|\mathbf{y}_2 - \mathcal{H}(\mathbf{x}_2)\|_{\mathbf{R}^{-1}}^2 + \|\mathbf{x}_2 - \mathcal{M}(\mathbf{x}_1)\|_{\mathbf{Q}^{-1}}^2.$$

- ▶ Ensemble subspace representation:

$$\begin{aligned} \mathbf{x}_1 &= \mathbf{x}_1^a + \mathbf{A}_1^a \mathbf{u}, & \mathbf{A}_1^a (\mathbf{A}_1^a)^T &= \mathbf{P}_1^a, & \mathbf{A}_1^a \mathbf{1} &= \mathbf{0}, \\ \mathbf{x}_2 &= \mathcal{M}(\mathbf{x}_1) + \mathbf{A}_2^q \mathbf{v}, & \mathbf{A}_2^q (\mathbf{A}_2^q)^T &= \mathbf{Q}, & \mathbf{A}_2^q \mathbf{1} &= \mathbf{0}. \end{aligned}$$

- ▶ Cost function in ensemble subspace:

$$J(\mathbf{u}, \mathbf{v}) = \mathbf{u}^T \mathbf{u} + \mathbf{v}^T \mathbf{v} + \|\mathbf{y}_2 - \mathcal{H}(\mathbf{x}_2)\|_{\mathbf{R}^{-1}}^2.$$

IEnKF-Q: formulation

- Compactification:

$$\mathbf{w} \equiv \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} \implies J(\mathbf{w}) = \mathbf{w}^T \mathbf{w} + \|\mathbf{y}_2 - \mathcal{H}(\mathbf{x}_2)\|_{\mathbf{R}^{-1}}^2.$$

- Condition of zero gradient:

$$\mathbf{w} - (\mathbf{H}\mathbf{A})^T \mathbf{R}^{-1} [\mathbf{y}_2 - \mathcal{H}(\mathbf{x}_2)] = \mathbf{0},$$

where

$$\mathbf{A} \equiv [\mathbf{M}\mathbf{A}_1^a, \mathbf{A}_2^q], \quad \mathbf{H} \equiv \nabla \mathcal{H}(\mathbf{x}_2), \quad \mathbf{M} \equiv \nabla \mathcal{M}(\mathbf{x}_1).$$

- The cost function can be minimized using a Gauss-Newton method

$$\mathbf{w}^{i+1} = \mathbf{w}^i - \mathbf{D}^i \nabla J(\mathbf{w}^i),$$

where the inverse Hessian is approximated as

$$\mathbf{D}^i \approx \left[\mathbf{I} + (\mathbf{H}^i \mathbf{A}^i)^T \mathbf{R}^{-1} \mathbf{H}^i \mathbf{A}^i \right]^{-1}.$$

IEnKF-Q: formulation

- Posterior anomalies:

$$\delta \mathbf{x}_1 = \mathbf{A}_1^a \delta \mathbf{u}, \quad \delta \mathbf{x}_2 = \mathbf{M} \mathbf{A}_1^a \delta \mathbf{u} + \mathbf{A}_2^q \delta \mathbf{v},$$

- Updated perturbations over $[t_1, t_2]$:

$$\mathbf{A}_2^a (\mathbf{A}_2^a)^T = E[\delta \mathbf{x}_2^* (\delta \mathbf{x}_2^*)^T] = \mathbf{A}^* E[\mathbf{w}^* (\mathbf{w}^*)^T] (\mathbf{A}^*)^T = \mathbf{A}^* \mathbf{D}^* (\mathbf{A}^*)^T,$$

which implies

$$\mathbf{A}_2^a = \mathbf{A}^* (\mathbf{D}^*)^{1/2} = \mathbf{A}^* \left[\mathbf{I} + (\mathbf{H}^* \mathbf{A}^*)^T (\mathbf{R})^{-1} \mathbf{H}^* \mathbf{A}^* \right]^{-1/2}.$$

- Updated (smoothed) perturbations at t_1 :

$$\mathbf{A}_1^s (\mathbf{A}_1^s)^T = E[\delta \mathbf{x}_1^* (\delta \mathbf{x}_1^*)^T] = \mathbf{A}_1^a E[\mathbf{u}^* (\mathbf{u}^*)^T] (\mathbf{A}_1^a)^T,$$

which implies

$$\mathbf{A}_1^s = \mathbf{A}_1^a (\mathbf{D}_{1:m, 1:m}^*)^{1/2}.$$

IEnKF-Q: Decoupling

- In all generality:

$$J(\mathbf{x}_1, \mathbf{x}_2) = -2 \ln p(\mathbf{x}_1, \mathbf{x}_2 | \mathbf{y}_2) = -2 \ln p(\mathbf{x}_2 | \mathbf{x}_1, \mathbf{y}_2) p(\mathbf{x}_1 | \mathbf{y}_2).$$

- If the observation operator \mathcal{H} is linear:

$$-2 \ln p(\mathbf{x}_1 | \mathbf{y}_2) = \|\mathbf{x}_1 - \mathbf{x}_1^a\|_{(\mathbf{P}_1^a)^{-1}}^2 + \|\mathbf{y}_2 - \mathcal{H} \circ \mathcal{M}(\mathbf{x}_1)\|_{(\mathbf{R} + \mathbf{H} \mathbf{Q} \mathbf{H}^T)^{-1}}^2 + c_1,$$

and

$$\begin{aligned} -2 \ln p(\mathbf{x}_2 | \mathbf{x}_1, \mathbf{y}_2) = & \|\mathbf{x}_2 - \mathcal{M}(\mathbf{x}_1) - \mathbf{Q} \mathbf{H}^T (\mathbf{R} + \mathbf{H} \mathbf{Q} \mathbf{H}^T)^{-1} [\mathbf{y}_2 - \mathcal{H} \circ \mathcal{M}(\mathbf{x}_1)]\|_{\mathbf{Q}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}}^2 \\ & + c_2, \end{aligned}$$

- Then the MAP of $J(\mathbf{x}_1, \mathbf{x}_2)$ can be computed in two steps:

- Minimize $-2 \ln p(\mathbf{x}_1 | \mathbf{y}_2)$ over \mathbf{x}_1 just like the IEnKF in the absence of model error but with $\mathbf{R} \rightarrow \mathbf{R} + \mathbf{H} \mathbf{Q} \mathbf{H}^T$.

- The MAP of $-2 \ln p(\mathbf{x}_2 | \mathbf{x}_1^*, \mathbf{y}_2)$ is then directly given by:

$$\mathbf{x}_2^* = \mathcal{M}(\mathbf{x}_1^*) + \mathbf{Q} \mathbf{H}^T \left(\mathbf{R} + \mathbf{H} \mathbf{Q} \mathbf{H}^T \right)^{-1} [\mathbf{y}_2 - \mathcal{H} \circ \mathcal{M}(\mathbf{x}_1^*)].$$

IEnKF-Q: Decoupling

- ▶ This decoupling also implies the decoupling of (\mathbf{u}, \mathbf{v}) :

$$\begin{aligned}\mathbf{u}^{i+1} - \mathbf{u}^i = & \mathbf{D}_u^i \left\{ (\mathbf{H} \mathbf{M}^i \mathbf{A}_1^a)^T (\mathbf{R}_u^i)^{-1} \right. \\ & \left. \times \left[\mathbf{y}_2 - \mathcal{H} \circ \mathcal{M}(\mathbf{x}_1^a + \mathbf{A}_1^a \mathbf{u}^i) \right] - \mathbf{u}^i \right\}.\end{aligned}$$

$$\mathbf{v}^* = \mathbf{D}_v^* (\mathbf{H} \mathbf{A}_2^q)^T (\mathbf{R}_v^*)^{-1} [\mathbf{y}_2 - \mathcal{H}(\mathbf{x}_2^*) + \mathbf{H} \mathbf{M}^* \mathbf{A}_1^a \mathbf{u}^*].$$

- ▶ However, this decoupling does not convey to the perturbations update!
- ▶ The same decoupling is used in particle filtering [Doucet et al., 2000] to build the optimal importance proposal particle filter.

IEnKF-Q: algorithm

```

1: function  $[E_2] = \text{ienkf\_cycle}(E_1^a, A_2^q, y_2, R, \mathcal{M}, \mathcal{H})$ 
2:    $x_1^a = E_1^a \mathbf{1}/m$ 
3:    $A_1^a = (E_1^a - x_1^a \mathbf{1}^T)/\sqrt{m-1}$ 
4:    $D = I, w = 0$ 
5:   repeat
6:      $x_1 = x_1^a + A_1^a w_{1:m}$ 
7:      $T = (D_{1:m,1:m})^{1/2}$ 
8:      $E_1 = x_1 \mathbf{1}^T + A_1^a T \sqrt{m-1}$ 
9:      $E_2 = \mathcal{M}(E_1)$ 
10:     $HA_2 = \mathcal{H}(E_2)(I - \mathbf{1}\mathbf{1}^T/m)T^{-1}/\sqrt{m-1}$ 
11:     $HA_2^q = \mathcal{H}(E_2 \mathbf{1}\mathbf{1}^T/m + A_2^q \sqrt{m_q-1})(I - \mathbf{1}\mathbf{1}^T/m_q)/\sqrt{m_q-1}$ 
12:     $HA = [HA_2, HA_2^q]$ 
13:     $x_2 = E_2 \mathbf{1}/m + A_2^q w_{m+1:m+m_q}$ 
14:     $\nabla J = w - (HA)^T R^{-1} [y_2 - \mathcal{H}(x_2)]$ 
15:     $D = [I + (HA)^T R^{-1} HA]^{-1}$ 
16:     $\Delta w = -D \nabla J$ 
17:     $w = w + \Delta w$ 
18:    until  $|\Delta w| < \varepsilon$ 
19:     $A_2 = E_2 (I - \mathbf{1}\mathbf{1}^T/m) T^{-1}$ 
20:     $A = [A_2/\sqrt{m-1}, A_2^q] D^{1/2}$ 
21:     $A_2 = SR(A, m) \sqrt{m-1}$ 
22:     $E_2 = x_2 \mathbf{1}^T + (1 + \delta) A_2$ 
23: end function

```

Outline

1 The iterative ensemble Kalman filter (IEnKF)

2 Theory of the IEnKF-Q

- Formulation
- Decoupling
- Base algorithm

3 Numerics for the IEnKF-Q

4 Asynchronous EnKF with additive model error

5 Conclusions

6 References

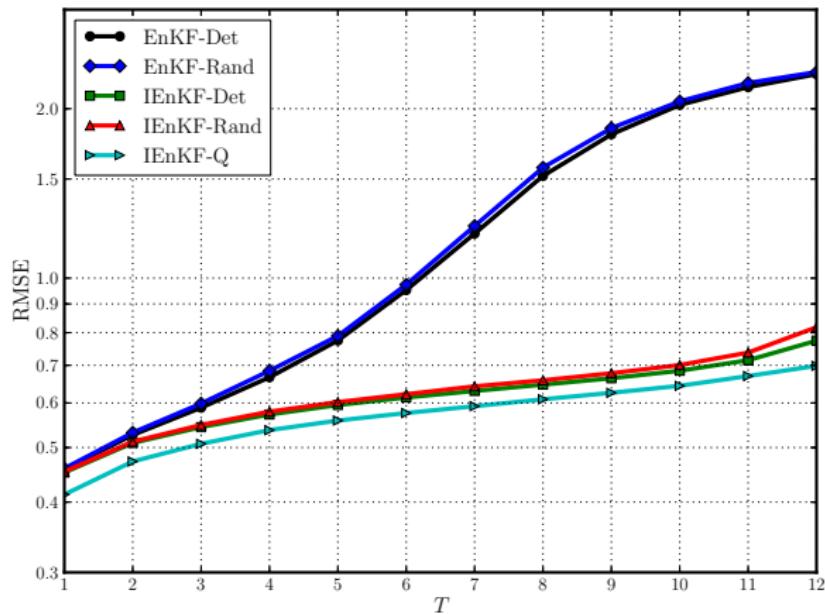
IEnKF-Q: numerical experiments

- ▶ Experiments performed on the Lorenz-95 model. Fully observed: $\mathbf{H} = \mathbf{I}$, $\mathbf{R} = \mathbf{I}$. We choose $m_q = 41$, so that \mathbf{Q} is full rank.
- ▶ Random mean-preserving rotations of the ensemble anomalies are sometimes applied to the IEnKF-Q, typically in the very weak model error regime.
- ▶ Comparisons with EnKF + accounting for \mathbf{Q} and IEnKF + accounting for \mathbf{Q} :
 - ▶ [Rand] Stochastic approach: $\mathbf{A}_2^f = \mathbf{M}\mathbf{A}_1^a + \mathbf{Q}^{1/2}\Xi$,
 - ▶ [Det] Deterministic approach: $\mathbf{A}_2^f = \mathbf{A} [\mathbf{I} + \mathbf{A}^\dagger \mathbf{Q} (\mathbf{A}^\dagger)^T]^{1/2}$, with $\mathbf{A} = \mathbf{M}\mathbf{A}_1^a$.

E. N. LORENZ AND K. A. EMANUEL, *Optimal sites for supplementary weather observations: simulation with a small model*, J. Atmos. Sci., 55 (1998), pp. 399–414

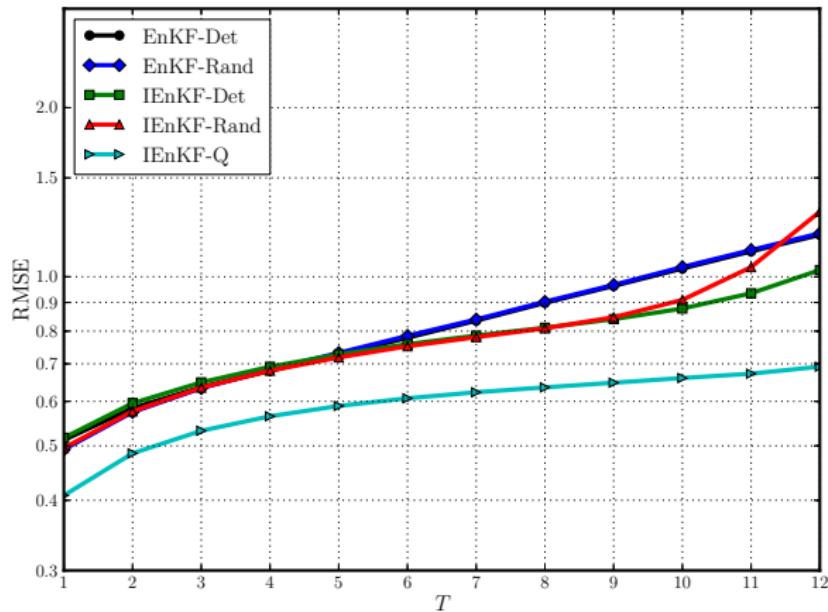
P. N. RAANES, A. CARRASSI, AND L. BERTINO, *Extending the square root method to account for additive forecast noise in ensemble methods*, Mon. Wea. Rev., 143 (2015), pp. 3857–38730

Test 1: nonlinearity



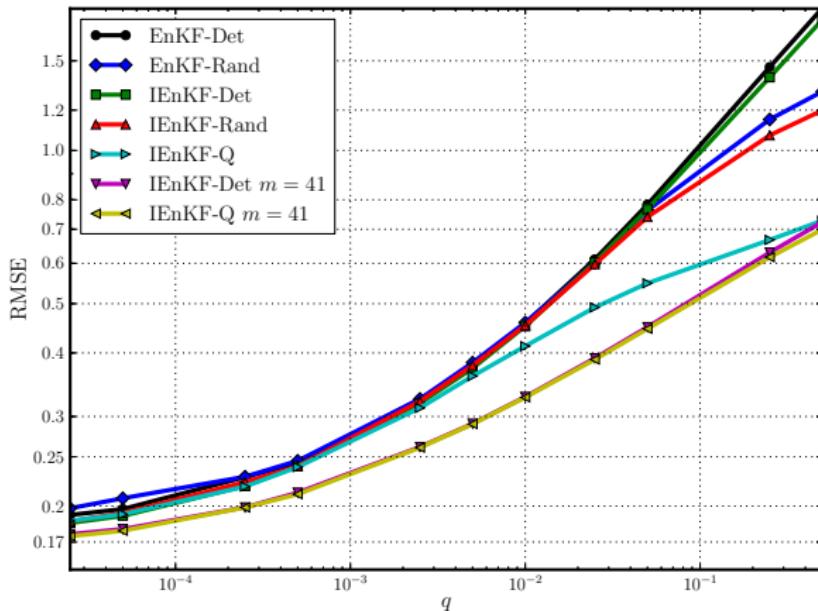
► $\mathbf{Q} = 0.01 T \mathbf{I}$, $m = 20$.

Test 1: nonlinearity (non-diagonal \mathbf{Q})



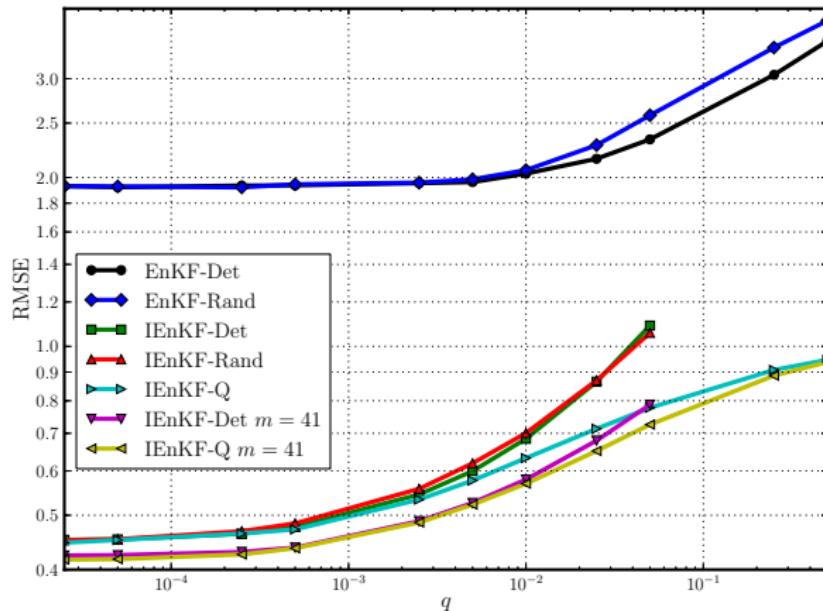
► $[\mathbf{Q}]_{ij} = 0.05 T (\exp[-d^2(i,j)/30]) + 0.1 \delta_{ij}, \ m = 30$

Test 2: model noise magnitude



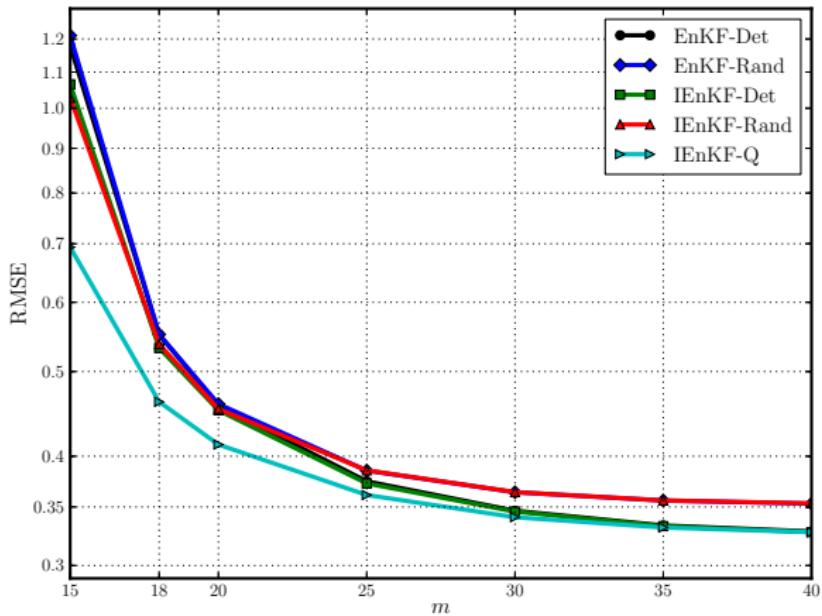
► $Q = qT\mathbf{I}$, $T = 1$, $m = 20$.

Test 2: model noise magnitude



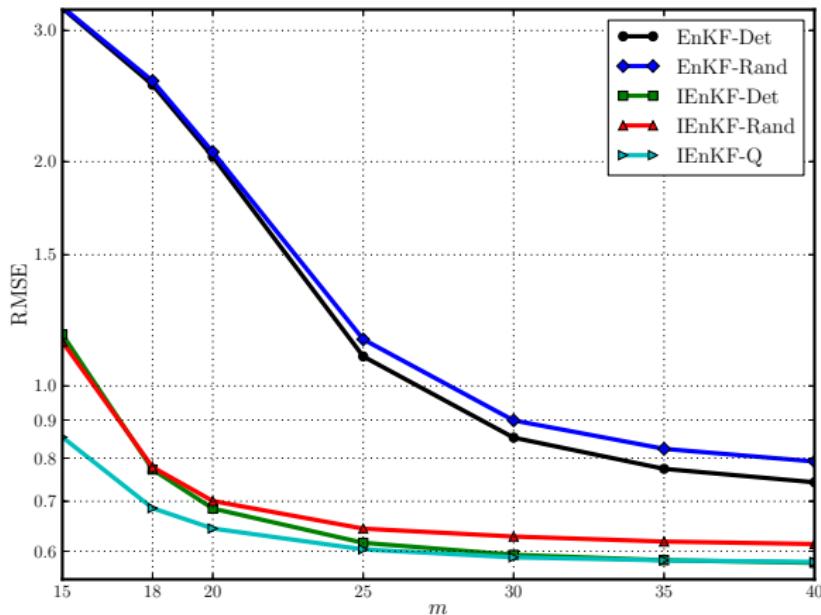
► $Q = qT\mathbf{I}$, $T = 10$, $m = 20$.

Test 3: ensemble size



► $Q = 0.01 T \mathbf{I}$, $T = 1$.

Test 3: ensemble size



► $Q = 0.01 T \mathbf{I}$, $T = 10$.

Outline

1 The iterative ensemble Kalman filter (IEnKF)

2 Theory of the IEnKF-Q

- Formulation
- Decoupling
- Base algorithm

3 Numerics for the IEnKF-Q

4 Asynchronous EnKF with additive model error

5 Conclusions

6 References

Asynchronous data assimilation for the EnKF

- ▶ How to simply and efficiently assimilate observations in between two update steps of the EnKF (linear order)?

B. R. HUNT, E. J. KOSTELICH, AND I. SZUNYOGH, *Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter*, Physica D, 230 (2007), pp. 112–126

P. SAKOV, G. EVENSEN, AND L. BERTINO, *Asynchronous data assimilation with the EnKF*, Tellus A, 62 (2010), pp. 24–29

- ▶ How to do so in presence of additive model error (linear order, $L \rightarrow k$)?

$$\begin{aligned}
 J(\mathbf{x}_0, \dots, \mathbf{x}_k) = & \|\mathbf{x}_0 - \mathbf{x}_0^a\|_{(\mathbf{P}_0^a)^{-1}}^2 + \sum_{i=1}^k \|\mathbf{y}_i - \mathcal{H}_i(\mathbf{x}_i)\|_{\mathbf{R}_i^{-1}}^2 \\
 & + \sum_{i=1}^k \|\mathbf{x}_i - \mathcal{M}_{i-1 \rightarrow i}(\mathbf{x}_{i-1})\|_{\mathbf{Q}_i^{-1}}^2.
 \end{aligned}$$

P. SAKOV AND M. BOCQUET, *Asynchronous data assimilation with the EnKF in presence of additive model error*, Tellus A, 0 (2017), pp. 0–0. in preparation

Asynchronous data assimilation for the EnKF

- ▶ Ensemble subspace representation, for $i = 1, \dots, k$:

$$\mathbf{x}_0 = \mathbf{x}_0^a + \mathbf{A}_0^a \mathbf{w}_0, \quad \mathbf{A}_0^a (\mathbf{A}_0^a)^T = \mathbf{P}_0^a, \quad \mathbf{A}_0^a \mathbf{1} = 0$$

$$\mathbf{x}_i = \mathcal{M}_{i-1 \rightarrow i}(\mathbf{x}_{i-1}) + \mathbf{A}_i^q \mathbf{w}_i, \quad \mathbf{A}_i^q (\mathbf{A}_i^q)^T = \mathbf{Q}_i, \quad \mathbf{A}_i^q \mathbf{1} = 0$$

- ▶ Compactification:

$$\mathbf{w} \equiv \text{vec}(\mathbf{w}_0, \dots, \mathbf{w}_k).$$

- ▶ Cost function in ensemble subspace:

$$\tilde{J}(\mathbf{w}) = \mathbf{w}^T \mathbf{w} + \|\mathbf{y} - \mathcal{H}(\mathbf{x})\|_{\mathbf{R}^{-1}}^2.$$

Asynchronous data assimilation for the EnKF

- Linearization (Gauss-Newton implied):

$$\mathbf{x} = \mathbf{x}^f + \mathbf{A}\mathbf{w} + O(\|\mathbf{w}\|^2),$$

with

$$\mathbf{x}^f \equiv \text{vec} \left(\{\mathcal{M}_{0 \rightarrow i}(\mathbf{x}_0^a)\}_{i=0, \dots, k} \right),$$

and

$$\mathbf{A} \equiv \text{vec}(\mathbf{A}_0, \dots, \mathbf{A}_k),$$

$$\mathbf{A}_i \equiv \begin{cases} [\mathbf{A}_0^a, \mathbf{0}], & i = 0 \\ [\mathbf{M}_{i-1 \rightarrow i} \mathbf{A}_{i-1}, \mathbf{A}_i^q, \mathbf{0}], & i = 1, \dots, k-1, \\ [\mathbf{M}_{k-1 \rightarrow k} \mathbf{A}_{k-1}, \mathbf{A}_k^q], & i = k. \end{cases}$$

Asynchronous data assimilation for the EnKF

- ▶ Cost function expansion:

$$\tilde{J}(\mathbf{w}) = \mathbf{w}^T \mathbf{w} + \left\| \mathbf{y} - \mathcal{H}(\mathbf{x}^f) - \mathbf{Y} \mathbf{w} + O(\|\mathbf{w}\|^2) \right\|_{\mathbf{R}^{-1}}^2,$$

where $\mathbf{Y} \equiv \text{vec} \left(\{\mathbf{H}_i \mathbf{A}_i\}_{i=1,\dots,k} \right)$.

- ▶ Linear order analysis (AEnKF):

$$\mathbf{x}^* = \mathbf{x}^f + \mathbf{A} \mathbf{w}^*,$$

$$\mathbf{A}^* = \mathbf{A} \mathbf{T}, \quad \mathbf{T} = \mathbf{D}^{-1/2} \mathbf{U},$$

$$\mathbf{w}^* = \mathbf{D}^{-1} \mathbf{Y}^T \mathbf{R}^{-1} \left[\mathbf{y} - \mathcal{H}(\mathbf{x}^f) \right],$$

$$\mathbf{D} \equiv \mathbf{I} + \mathbf{Y}^T \mathbf{R}^{-1} \mathbf{Y}.$$

- ▶ The computation of \mathbf{A}_i and \mathbf{Y} can also be extrapolated to mild nonlinearity.

P. SAKOV AND M. BOCQUET, *Asynchronous data assimilation with the EnKF in presence of additive model error*, Tellus A, 0 (2017), pp. 0–0. in preparation

Outline

1 The iterative ensemble Kalman filter (IEnKF)

2 Theory of the IEnKF-Q

- Formulation
- Decoupling
- Base algorithm

3 Numerics for the IEnKF-Q

4 Asynchronous EnKF with additive model error

5 Conclusions

6 References

Conclusions

- We have extended the iterative ensemble Kalman filter (IEnKF) to iterative ensemble Kalman filter in presence of model error (IEnKF-Q).
- It consistently outperforms ad hoc schemes that incorporate model error into the IEnKF with the L95 model, and any other EnKF-based scheme.
- We have extended the asynchronous ensemble Kalman filter (AEnKF) to the asynchronous ensemble Kalman filter in presence of model error (AEnKF-Q).
- In practice, one would have to estimate \mathbf{Q} on top of these developments. A currently flourishing topic!

Final word

Thank you for your attention!

References

- [1] M. BOCQUET AND P. SAKOV, *Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems*, *Nonlin. Processes Geophys.*, 19 (2012), pp. 383–399.
- [2] M. BOCQUET AND P. SAKOV, *An iterative ensemble Kalman smoother*, *Q. J. R. Meteorol. Soc.*, 140 (2014), pp. 1521–1535.
- [3] B. R. HUNT, E. J. KOSTELICH, AND I. SZUNYOGH, *Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter*, *Physica D*, 230 (2007), pp. 112–126.
- [4] E. N. LORENZ AND K. A. EMANUEL, *Optimal sites for supplementary weather observations: simulation with a small model*, *J. Atmos. Sci.*, 55 (1998), pp. 399–414.
- [5] P. N. RAANES, A. CARRASSI, AND L. BERTINO, *Extending the square root method to account for additive forecast noise in ensemble methods*, *Mon. Wea. Rev.*, 143 (2015), pp. 3857–38730.
- [6] P. SAKOV AND M. BOCQUET, *Asynchronous data assimilation with the EnKF in presence of additive model error*, *Tellus A*, 0 (2017), pp. 0–0. in preparation.
- [7] P. SAKOV, G. EVENSEN, AND L. BERTINO, *Asynchronous data assimilation with the EnKF*, *Tellus A*, 62 (2010), pp. 24–29.
- [8] P. SAKOV, J.-M. HAUSSAIRE, AND M. BOCQUET, *An iterative ensemble Kalman filter in presence of additive model error*, *Q. J. R. Meteorol. Soc.*, 0 (2017), pp. 0–0. Submitted.
- [9] P. SAKOV, D. S. OLIVER, AND L. BERTINO, *An iterative EnKF for strongly nonlinear systems*, *Mon. Wea. Rev.*, 140 (2012), pp. 1988–2004.