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What this talk is about . . .

I Iterative ensemble Kalman smoother (IEnKS): exemplar of nonlinear four-dimensional
EnVar methods.

I It propagates the error statistics from one cycle to the next with the ensemble
(errors of the day).

I It performs a 4D-Var analysis at each cycle (within the ensemble subspace).

ITypical cycling (L = 6, S = 2):
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Cost functions

IGeneral cost function over [t1, . . . ,tL]; weak-constraint formalism:

JL(x1, . . . ,xL) = ‖x1−xf
1‖2

(Pf
1)−1 +

L

∑
i=1

‖yi −Hi (xi )‖2
R−1
i

+
L

∑
i=2

‖xi −Mi (xi−1)‖2
Q−1

i
.

IConfigurations addressed in this talk:

IThe case L = 1, S = 1, the so-called iterative ensemble Kalman filter → IEnKF:

JL(x1,x2) = ‖x1−xf
1‖2

(Pf
1)−1 +‖y2−H2 ◦M2(x1)‖2

R−1
2
.

IThe IEnKF but, now, with additive model error → IEnKF-Q :

JL(x1,x2) = ‖x1−xf
1‖2

(Pf
1)−1 +‖y2−H2(x2)‖2

R−1
2

+‖x2−M2(x1)‖2
Q−1

2
.

IThe linearized case L+ 1 = S with additive model error, called the asynchronous
ensemble Kalman filter → AEnKF.

P. Sakov, J.-M. Haussaire, and M. Bocquet, An iterative ensemble Kalman filter in presence of additive model error, Q.

J. R. Meteorol. Soc., 0 (2017), pp. 0–0. Submitted
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The iterative ensemble Kalman filter (IEnKF)

Iterative ensemble Kalman filter: a Bayesian standpoint

IGaussian assumption for the prior:

p(x1) = n (x1|x1,P1) .

IForecast under perfect model assumption:

p(x2|x1) ∝ δ {x2−M2(x1)} .

I Likelihood used in the analysis:

p(y2|x2) = n (y2−H2(x2)|0,R2) .

I (Full cycle) analysis of the initial condition x1:

p(x1|y2) ∝p(y2|x1)p(x1)

∝p(y2|x2 = M2(x1))p(x1).

IAnalysis (forecast!) of the filtering distribution:

p(x2|y2) =
∫

dx1 p(x2|x1,y2)p(x1|y2)

=
∫

dx1 δ {x2−M2(x1)}p(x1|y2).

M. Bocquet and P. Sakov, An iterative ensemble Kalman smoother, Q. J. R. Meteorol. Soc., 140 (2014), pp. 1521–1535
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The iterative ensemble Kalman filter (IEnKF)

Iterative ensemble Kalman filter: a variational standpoint

IAnalysis IEnKF cost function in state space p(x1|y2) ∝ exp(−J (x1)):

J (x1) =
1

2
‖y2−H2 ◦M2(x1))‖2

R−1
2

+
1

2
‖x1−x1‖2

P−1
1
.

IReduced scheme in ensemble subspace, x1 = x1 +A1w1, where A1 is the normalized
ensemble anomaly matrix:

J̃ (w1) = J (x1 +A1w1).

I IEnKF cost function in ensemble space:

J̃ (w1) =
1

2
‖y2−H2 ◦M2 (x1 +A1w1)‖2

R−1
2

+
1

2
‖w1‖2.

P. Sakov, D. S. Oliver, and L. Bertino, An iterative EnKF for strongly nonlinear systems, Mon. Wea. Rev., 140 (2012),

pp. 1988–2004

M. Bocquet and P. Sakov, Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems,

Nonlin. Processes Geophys., 19 (2012), pp. 383–399
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The iterative ensemble Kalman filter (IEnKF)

Iterative ensemble Kalman filter: minimization scheme

IAs a variational reduced method, one can use Gauss-Newton [Sakov et al., 2012],
Levenberg-Marquardt [Bocquet and Sakov, 2012; Chen and Oliver, 2012], etc, minimization
schemes (not limited to quasi-Newton).

IGauss-Newton scheme:

w
(j+1)
1 = w

(j)
1 −H̃ −1

(j)
∇J̃(j)(w

(j)
1 ),

x
(j)
1 = x1 +A1w

(j)
1 ,

∇J̃(j) = w
(j)
1 −YT

(j)R
−1
2

(
y2−H2 ◦M2(x

(j)
1 )
)
,

H̃(j) = IN +YT
(j)R

−1
2 Y(j),

Y(j) = [H2 ◦M2]′
|x(j)

1

A1.
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The iterative ensemble Kalman filter (IEnKF)

Iterative ensemble Kalman filter: computing the sensitivities

ISensitivities Y(p) computed by ensemble propagation without TLM and adjoint ([Gu

and Oliver, 2007; Liu et al., 2008; Buehner et al., 2010])

IFirst alternative [Sakov et al., 2012]: the transform scheme. The ensemble is
preconditioned before its propagation using the ensemble transform

T(j) =
(
IN +YT

(j)R
−1Y(j)

)−1/2
,

obtained at the previous iteration. The inverse transformation is applied after
propagation.

ISecond alternative [Bocquet and Sakov, 2012]: the bundle scheme. It simply mimics the
action of the tangent linear by finite difference:

Y(j) ≈
1

ε
H2 ◦M2

(
x(j)1T + εA1

)(
IN −

11T

N

)
.
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Theory of the IEnKF-Q

Outline

1 The iterative ensemble Kalman filter (IEnKF)

2 Theory of the IEnKF-Q
Formulation
Decoupling
Base algorithm

3 Numerics for the IEnKF-Q

4 Asynchronous EnKF with additive model error

5 Conclusions

6 References

M. Bocquet 12th EnKF workshop, Os, Norway, 12-14 June 2017 9 / 32



Theory of the IEnKF-Q Formulation

IEnKF-Q: formulation

IAnalysis cost function:

J(x1,x2) = ‖x1−xa
1‖2

(Pa
1)−1 +‖y2−H (x2)‖2

R−1 +‖x2−M (x1)‖2
Q−1 .

IEnsemble subspace representation:

x1 = xa
1 +Aa

1u, Aa
1(Aa

1)T = Pa
1, Aa

11 = 0,

x2 = M (x1) +Aq
2v, Aq

2(Aq
2)T = Q, Aq

21 = 0.

ICost function in ensemble subspace:

J(u,v) = uTu+vTv+‖y2−H (x2)‖2
R−1 .
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Theory of the IEnKF-Q Formulation

IEnKF-Q: formulation

ICompactification:

w ≡
[

u
v

]
=⇒ J(w) = wTw+‖y2−H (x2)‖2

R−1 .

ICondition of zero gradient:

w− (HA)TR−1 [y2−H (x2)] = 0,

where
A≡ [MAa

1,A
q
2 ], H≡ ∇H (x2), M≡ ∇M (x1).

IThe cost function can be minimized using a Gauss-Newton method

wi+1 = wi −Di
∇J(wi ),

where the inverse Hessian is approximated as

Di ≈
[
I+ (HiAi )TR−1HiAi

]−1
.
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Theory of the IEnKF-Q Formulation

IEnKF-Q: formulation

IPosterior anomalies:

δx1 = Aa
1 δu, δx2 = MAa

1 δu+Aq
2 δv,

IUpdated perturbations over [t1,t2]:

Aa
2(Aa

2)T = E[δx?2(δx?2)T] = A?E[w?(w?)T](A?)T = A?D?(A?)T,

which implies

Aa
2 = A?(D?)1/2 = A?

[
I+ (H?A?)T(R)−1H?A?

]−1/2
.

IUpdated (smoothed) perturbations at t1:

As
1(As

1)T = E[δx?1(δx?1)T] = Aa
1E[u?(u?)T](Aa

1)T,

which implies
As

1 = Aa
1 (D?

1:m,1:m)1/2.

M. Bocquet 12th EnKF workshop, Os, Norway, 12-14 June 2017 12 / 32



Theory of the IEnKF-Q Decoupling

IEnKF-Q: Decoupling

I In all generality:

J(x1,x2) =−2lnp(x1,x2|y2) =−2lnp(x2|x1,y2)p(x1|y2).

I If the observation operator H is linear:

−2lnp(x1|y2) = ‖x1−xa
1‖

2
(Pa

1)−1 +‖y2−H ◦M (x1)‖2
(R+HQHT)−1 + c1,

and

−2lnp(x2|x1,y2) =‖x2−M (x1)−QHT(R+HQHT)−1 [y2−H ◦M (x1)]‖2
Q−1+HTR−1H

+ c2,

IThen the MAP of J(x1,x2) can be computed in two steps:

IMinimize −2lnp(x1|y2) over x1 just like the IEnKF in the absence of model error
but with R→ R+HQHT.

IThe MAP of −2lnp(x2|x?1,y2) is then directly given by:

x?2 = M (x?1) +QHT
(
R+HQHT

)−1
[y2−H ◦M (x?1)] .
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Theory of the IEnKF-Q Decoupling

IEnKF-Q: Decoupling

IThis decoupling also implies the decoupling of (u,v):

ui+1−ui =Di
u

{
(HMiAa

1)T(Ri
u)−1

×
[
y2−H ◦M (xa

1 +Aa
1u

i )
]
−ui

}
.

v? = D?
v (HAq

2)T(R?
v )−1 [y2−H (x?2) +HM?Aa

1u
?] .

IHowever, this decoupling does not convey to the perturbations update!

IThe same decoupling is used in particle filtering [Doucet et al., 2000] to build the optimal
importance proposal particle filter.
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Theory of the IEnKF-Q Base algorithm

IEnKF-Q: algorithm

1: function [E2] = ienkf cycle(Ea
1, A

q
2 , y2, R, M ,H )

2: xa
1 = Ea

1 1/m
3: Aa

1 = (Ea
1− xa

11
T)/
√
m−1

4: D = I, w = 0
5: repeat
6: x1 = xa

1 +Aa
1w1:m

7: T = (D1:m,1:m)1/2

8: E1 = x11T +Aa
1T
√
m−1

9: E2 = M (E1)
10: HA2 = H (E2)(I−11T/m)T−1/

√
m−1

11: HAq
2 = H (E211T/m+Aq

2

√
mq−1)(I−11T/mq)/

√
mq−1

12: HA = [HA2,HAq
2 ]

13: x2 = E21/m+Aq
2wm+1:m+mq

14: ∇J = w− (HA)TR−1[y2−H (x2)]
15: D = [I+ (HA)TR−1HA]−1

16: ∆w =−D∇J
17: w = w+ ∆w
18: until |∆w|< ε

19: A2 = E2 (I−11T/m)T−1

20: A = [A2/
√
m−1,Aq

2 ]D1/2

21: A2 = SR(A,m)
√
m−1

22: E2 = x21T + (1 + δ)A2

23: end function
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Numerics for the IEnKF-Q

IEnKF-Q: numerical experiments

IExperiments performed on the Lorenz-95 model. Fully observed: H = I, R = I.
We choose mq = 41, so that Q is full rank.

IRandom mean-preserving rotations of the ensemble anomalies are sometimes
applied to the IEnKF-Q, typically in the very weak model error regime.

IComparisons with EnKF + accounting for Q and IEnKF + accounting for Q:

I [Rand] Stochastic approach: Af
2 = MAa

1 +Q1/2Ξ,

I [Det] Deterministic approach: Af
2 = A

[
I+A†Q(A†)T

]1/2
, with A = MAa

1.

E. N. Lorenz and K. A. Emanuel, Optimal sites for supplementary weather observations: simulation with a small model, J.

Atmos. Sci., 55 (1998), pp. 399–414

P. N. Raanes, A. Carrassi, and L. Bertino, Extending the square root method to account for additive forecast noise in

ensemble methods, Mon. Wea. Rev., 143 (2015), pp. 3857–38730
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Numerics for the IEnKF-Q

Test 1: nonlinearity
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Numerics for the IEnKF-Q

Test 1: nonlinearity (non-diagonal Q)
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I [Q]ij = 0.05T (exp[−d2(i , j)/30]) + 0.1δij , m = 30
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Numerics for the IEnKF-Q

Test 2: model noise magnitude
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IQ = qT I, T = 1, m = 20.
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Numerics for the IEnKF-Q

Test 2: model noise magnitude
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Numerics for the IEnKF-Q

Test 3: ensemble size
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Numerics for the IEnKF-Q

Test 3: ensemble size
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Asynchronous EnKF with additive model error
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Asynchronous EnKF with additive model error

Asynchronous data assimilation for the EnKF

IHow to simply and efficiently assimilate observations in between two update
steps of the EnKF (linear order)?
B. R. Hunt, E. J. Kostelich, and I. Szunyogh, Efficient data assimilation for spatiotemporal chaos: A local ensemble

transform Kalman filter, Physica D, 230 (2007), pp. 112–126

P. Sakov, G. Evensen, and L. Bertino, Asynchronous data assimilation with the EnKF, Tellus A, 62 (2010), pp. 24–29

IHow to do so in presence of additive model error (linear order, L→ k)?

J(x0, . . . ,xk) =‖x0−xa0‖
2
(Pa

0)−1 +
k

∑
i=1

‖yi −Hi (xi )‖2
R−1
i

+
k

∑
i=1

‖xi −Mi−1→i (xi−1)‖2
Q−1
i
.

P. Sakov and M. Bocquet, Asynchronous data assimilation with the EnKF in presence of additive model error, Tellus A, 0

(2017), pp. 0–0. in preparation
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Asynchronous EnKF with additive model error

Asynchronous data assimilation for the EnKF

IEnsemble subspace representation, for i = 1, . . . ,k :

x0 = xa0 +Aa
0w0, Aa

0(Aa
0)T = Pa

0, Aa
01 = 0

xi = Mi−1→i (xi−1) +Aq
i wi , Aq

i (Aq
i )T = Qi , Aq

i 1 = 0

ICompactification:
w ≡ vec(w0, . . . ,wk) .

ICost function in ensemble subspace:

J̃(w) = wTw+‖y−H (x)‖2
R−1 .
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Asynchronous EnKF with additive model error

Asynchronous data assimilation for the EnKF

I Linearization (Gauss-Newton implied):

x = xf +Aw+O(‖w‖2),

with
xf ≡ vec

(
{M0→i (x

a
0)}i=0,...,k

)
,

and

A≡ vec(A0, . . . ,Ak),

Ai ≡


[Aa

0,0], i = 0

[Mi−1→iAi−1,A
q
i ,0], i = 1, . . . ,k−1,

[Mk−1→kAk−1,A
q
k ], i = k .
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Asynchronous EnKF with additive model error

Asynchronous data assimilation for the EnKF

ICost function expansion:

J̃(w) = wTw+
∥∥∥y−H (xf )−Yw+O(‖w‖2)

∥∥∥2

R−1
,

where Y ≡ vec
(
{HiAi}i=1,...,k

)
.

I Linear order analysis (AEnKF):

x? = xf +Aw?,

A? = AT, T = D−1/2U,

w? = D−1YTR−1
[
y−H (xf )

]
,

D≡ I+YTR−1Y.

IThe computation of Ai and Y can also be extrapolated to mild nonlinearity.
P. Sakov and M. Bocquet, Asynchronous data assimilation with the EnKF in presence of additive model error, Tellus A, 0

(2017), pp. 0–0. in preparation
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Conclusions

Conclusions

We have extended the iterative ensemble Kalman filter (IEnKF) to iterative
ensemble Kalman filter in presence of model error (IEnKF-Q).

It consistently outperforms ad hoc schemes that incorporate model error into the
IEnKF with the L95 model, and any other EnKF-based scheme.

We have extended the asynchronous ensemble Kalman filter (AEnKF) to the
asynchronous ensemble Kalman filter in presence of model error (AEnKF-Q).

In practice, one would have to estimate Q on top of these developments. A
currently flourishing topic!
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Conclusions

Final word

Thank you for your attention!
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