An iterative ensemble Kalman filter
in presence of additive model error

Marc Bocquet!, Pavel Sakov2, Jean-Matthieu Haussairel

(1) CEREA, joint lab Ecole des Ponts ParisTech and EdF R&D, Université Paris-Est, France
Institut Pierre-Simon Laplace
(2) Environment and Research Division, Bureau of Meteorology, Melbourne, Australia

(marc.bocquet®@enpc.fr)

¢ Institut
L A Pi
& il 5’%%
€DF Laplace

ParisTech ROD

Australian Government

Bureau of Metcorology

12th EnkF workshop, Os, Norway, 12-14 June 2017 1/32



|
What this talk is about . ..

» lterative ensemble Kalman smoother (IEnKS): exemplar of nonlinear four-dimensional
EnVar methods.

» It propagates the error statistics from one cycle to the next with the ensemble
(errors of the day).
» It performs a 4D-Var analysis at each cycle (within the ensemble subspace).

» Typical cycling (L=6, S=2):
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Cost functions

» General cost function over [t1,...,t;]; weak-constraint formalism:

L L
Ji(xa,.oxp) = [Ix1 —X§pr§)71 + Y lyi = Al + Y Ixi = i(xi1) g -
= P> i

» Configurations addressed in this talk:

» The case L =1, S =1, the so-called iterative ensemble Kalman filter — I[EnKF:

Ji(x1,%2) =[x _Xg_”%pg)—l +ly2 — O//lz(X1)||2R2—1~

» The IEnKF but, now, with additive model error — IEnKF-Q :

Ju(x1.%2) = [lx = x3[pgy 1 +1ly2 = H3(2) s + %2 — 2(x1) I

» The linearized case L+1 =S with additive model error, called the asynchronous
ensemble Kalman filter — AEnKF.

P. Sakov, J.-M. HAUSSAIRE, AND M. BOCQUET, An iterative ensemble Kalman filter in presence of additive model error, Q.

J. R. Meteorol. Soc., 0 (2017), pp. 0-0. Submitted
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The iterative ensemble Kalman filter (IEnKF)

@ The iterative ensemble Kalman filter (IEnKF)
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Iterative ensemble Kalman filter: a Bayesian standpoint

» Gaussian assumption for the prior:

p(x1) = n(x1[x1,P1).
» Forecast under perfect model assumption:
p(xa|x1) o< 8 {x2 — A2(x1)} .
» Likelihood used in the analysis:
p(y2/x2) = n(y2 — Ha(x2)[0,R2) .
» (Full cycle) analysis of the initial condition x;:
p(x1ly2) =<p(y2|x1)p(x1)
o<p(y2[x2 = .#2(x1))p(x1)-
» Analysis (forecast!) of the filtering distribution:

p(x2ly2) :/dxl p(x2|x1,y2)p(x1]y2)

:/dx1 8 {xo — Ar(x1)} p(x1]y2)-

M. BOCQUET AND P. SAKOV, An iterative ensemble Kalman smoother, Q. J. R. Meteorol. Soc., 140 (2014), pp. 1521-1535
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The iterative ensemble Kalman filter (IEnKF)

Iterative ensemble Kalman filter: a variational standpoint

» Analysis IEnKF cost function in state space p(x1|y2) o< exp(—_#(x1)):
_ 1 Y 2 1 = (12
J0a) = 5 lva — Ao tta(ra)) s + 5 lxa —l

» Reduced scheme in ensemble subspace, x; = X3 +Ajwy, where A; is the normalized
ensemble anomaly matrix:

F(wi)= 7 (X1 +Arwy).

» |IEnKF cost function in ensemble space:

—~ 1 1
S (wi) = 5 lly2 = A0 M2 (%1 + Arwr) H2R2—1 +5 lwe ||

P. Saxov, D. S. OLIVER, AND L. BERTINO, An iterative EnKF for strongly nonlinear systems, Mon. Wea. Rev., 140 (2012),
pp. 1988-2004
M. BocQUET AND P. SAKov, Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems,

Nonlin. Processes Geophys., 19 (2012), pp. 383-399
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The iterative ensemble Kalman filter (IEnKF)

[terative ensemble Kalman filter: minimization scheme

» As a variational reduced method, one can use Gauss-Newton [Sakov et al., 2012],
Levenberg-Marquardt [Bocquet and Sakov, 2012; Chen and Oliver, 2012], etc, minimization
schemes (not limited to quasi-Newton).

» Gauss-Newton scheme:
) D 7 )
X(l‘,) =X+ Alng),
> T p-1
A =W +YyHRY (),
Y () = [0 ] Ar.
1
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The iterative ensemble Kalman filter (IEnKF)

Iterative ensemble Kalman filter: computing the sensitivities

» Sensitivities Y(p) computed by ensemble propagation without TLM and adjoint ([Gu
and Oliver, 2007; Liu et al., 2008; Buehner et al., 2010])

» First alternative [Sakov et al., 2012]: the transform scheme. The ensemble is
preconditioned before its propagation using the ensemble transform

_ “1y, ) TV?
T = (lN +Y[R Y(j,) 7

obtained at the previous iteration. The inverse transformation is applied after
propagation.

» Second alternative [Bocquet and Sakov, 2012]: the bundle scheme. It simply mimics the
action of the tangent linear by finite difference:

1 ; 117
Y(J) ~ g% 0%2 (X(’j)lT—FEAl) (I — W) .
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Outline

e Theory of the IEnKF-Q
@ Formulation
@ Decoupling
@ Base algorithm
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Formulation
I[EnKF-Q: formulation

» Analysis cost function:
J(x1,%2) = [[x1 =3¢ | pyy1 + lly2 = A (x2) g1 + IIx2 — 2 (x1) | §-1-
» Ensemble subspace representation:

x1 = xj + Afu, A(ADHT =p3, Ai1=0,
xo = M (x1)+AJv, AJ(ADT =Q, AJ1=0.

» Cost function in ensemble subspace:

J(u,v) = uTu+vTv+ Ily2 7%(X2)”§71 .
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Formulation
I[EnKF-Q: formulation

» Compactification:

w= { : } = Jw)=ww|y2 = #(x2) R 1

» Condition of zero gradient:

w—(HA)'R ! [y, — 7 (x2)] = 0,

where
A=[MA} A7, H=V.Z(x2), M=V.Z(x1).

» The cost function can be minimized using a Gauss-Newton method

witl =w —D'VJ(w'),

where the inverse Hessian is approximated as

. .. .oq—1
D ~ [|+(H'A')TR—1H'A'] .
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Formulation
I[EnKF-Q: formulation

» Posterior anomalies:
5x1 = Aj Su, 5xo = MA} Su+AJ v,

» Updated perturbations over [t1, t2]:
5(A3)" = E[8x5(8x5)"] = A"E[w” (w")"](A")" = A"D*(A")",

which implies
—-1/2
A3 = A*(D*)Y/2 = A* [H—(H*A*)T(R)*lH*A* 2

» Updated (smoothed) perturbations at t;:

Aj(A})" =E[8x1(8x])"] = ATE[u" (u")T](A])",
which implies
=AY (DL i)

1I:m1l:m
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Decoupling
IEnKF-Q: Decoupling

» In all generality:

J(x1,%2) = —2In p(x1,%2|y2) = —2Inp(x2|x1,y2)p(x1|y2).

» If the observation operator 77 is linear:
=2Inp(xaly2) = [x1 = x4 | psy-1 +[ly2 — 7 04 (x1) TR mqury: + €1,
and
—2Inp(xafx1,y2) =|x2 = #(x1) — QH"(R+HQH") ! [yo — 0 4 (x1)] [ @1 s -1
+ 2,

» Then the MAP of J(x1,x2) can be computed in two steps:

» Minimize —21Inp(x;|y2) over x; just like the IEnKF in the absence of model error
but with R — R+HQHT,

» The MAP of —2Inp(x2|x},y2) is then directly given by:
* * T ! *
X = (x3)+ QHT (R-+HQHT) " [yo — 7 0.2 (x])].

12th EnkF workshop, Os, Norway, 12-14 June 2017 13 /32



Decoupling
IEnKF-Q: Decoupling

» This decoupling also implies the decoupling of (u,v):

u™*! —u’ =D}, {(HM'A})"(R]) !

X [yz—%m///(xﬁ‘—i—Aﬁu")] —u’}.
v' =D} (HAD)"(R)) " [y2 — #(x3) + HM*Aju’].

» However, this decoupling does not convey to the perturbations update!

» The same decoupling is used in particle filtering [Doucet et al., 2000] to build the optimal
importance proposal particle filter.
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Base algorithm
IEnKF-Q: algorithm

1: function [E;] = ienkf_cycle(E}, A],y>, R, #, %)
2 x{ =E{1/m

3 A = (B3 —x31T)//m—1

4 D=1, w=0

5: repeat

6: x1 =x§ +Aiwr.,

7 T= (Dl:rn.l:m)l/2

8: E1:x11T+A"{T\/m—1

9: E, =.#(E;)

10: HA; = 7(E)(1-11T/m) T 1 //m—1

11: HA] = 7(Ex11T ) m+ A\ /mq —1)(1- 11T/ myg) /\/mg — 1
12: HA = [HA; HA{]

13: X2 = E21/m+AgWrn+1:m+mq

14: VJ=w— (HA)TR [y — 5 (x2)]

15: D =[I+(HA)TRIHA]!

16: Aw=-DVJ

17: w=w+Aw

18: until |Aw| < ¢
19: A =E(1-11T/m)T!
20: A=[Ay/vm—1,A{]D'?
21: A; =SR(A,m)y/m—1
22: Ex =x1T 4+ (1+6)As
23: end function
12th EnkF workshop, Os, Norway, 12-14 June 2017 15 / 32



Outline

© Numerics for the IEnKF-Q
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Numerics for the IEnKF-Q

IEnKF-Q: numerical experiments

» Experiments performed on the Lorenz-95 model. Fully observed: H=1, R=1.
We choose mg =41, so that Q is full rank.

» Random mean-preserving rotations of the ensemble anomalies are sometimes
applied to the IEnKF-Q, typically in the very weak model error regime.
» Comparisons with EnKF + accounting for Q and IEnKF + accounting for Q:

» [Rand] Stochastic approach: Al = MA% + Q'/2=,

N 12 .

» [Det] Deterministic approach: AL = A [I+ATQ(A")T] /2 with A = MA3.
E. N. LoreNz AND K. A. EMANUEL, Optimal sites for supplementary weather observations: simulation with a small model, J.
Atmos. Sci., 55 (1998), pp. 399-414

P. N. RAANES, A. CARRASSI, AND L. BERTINO, Extending the square root method to account for additive forecast noise in

ensemble methods, Mon. Wea. Rev., 143 (2015), pp. 3857-38730
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Numerics for the IEnKF-Q

Test 1: nonlinearity

EnKF-Det
EnKF-Rand
IEnKF-Det
IEnKF-Rand
IEnKF-Q

11111

»Q=0.01TI1, m=20.
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Test 1: nonlinearity (non-diagonal Q)

o= [nKF-Det
4—¢ EnKF-Rand
20l ™™ IEnKF-Det, ]
#— [EnKF-Rand
= [EnKF-Q
15F T s

> [Q];; = 0.05T (exp[—d?(i,j)/30]) +0.18;, m=30
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Numerics for the IEnKF-Q

Test 2: model noise magnitude

RMSE

11t

N
A

EnKF-Det
EnKF-Rand
IEnKF-Det,
IEnKF-Rand
IEnKF-Q
IEnKF-Det m = 41
IEnKF-Q m = 41

L L L
10~ 1073 1072

>»Q=qTl, T=1 m=20.
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Numerics for the IEnKF-Q

Test 2: model noise magnitude

3.0F

25F

20§

18f .

16F .
% 14T e—e EnKF-Det T
Z 12} #= EnKF-Rand : 1

o =8 JEnKF-Det

ool| & IEnKF-Rand

osh = IEnKF-Q

o1l V=¥ [EnKF-Det m = 41 |

T} <= IEnKF-Q m =41

0.6 8

0.5 .

0.4 . ; ; ;

10 10°° 102 10!
q

> Q=gqTl, T=10, m=20.
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Numerics for the IEnKF-Q

Test 3: ensemble size

EnKF-Det |
EnKF-Rand
IEnKF-Det ||
IEnKF-Rand

IEnKF-Q 1

It

RMSE

m

»Q=0.01TI1 T=1.
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Numerics for the IEnKF-Q

Test 3: ensemble size

RMSE

m

»QR=0.01TI T =10.

12th EnkF workshop, Os, Norway, 12-14 June 2017

3.0F o= EnKF-Det 1
=& EnKF-Rand
B—8 [EnKF-Det
=4 JEnKF-Rand
20k > [EnKF-Q ]
15 g
5 20 % 30 %
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Asynchronous EnKF with additive model error

@ Asynchronous EnKF with additive model error
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Asynchronous EnKF with additive model error

Asynchronous data assimilation for the EnKF

» How to simply and efficiently assimilate observations in between two update
steps of the EnKF (linear order)?

B. R. HunT, E. J. KOSTELICH, AND 1. SZUNYOGH, Efficient data assimilation for spatiotemporal chaos: A local ensemble

transform Kalman filter, Physica D, 230 (2007), pp. 112-126
P. Sakov, G. EVENSEN, AND L. BERTINO, Asynchronous data assimilation with the EnKF, Tellus A, 62 (2010), pp. 24-29

» How to do so in presence of additive model error (linear order, L — k)?
2 d 2
Jx0xi) = 0 X3 gy 1 + X i — i) n
i=1 !

k
+ Y Ixi— ///iin(Xiq)Héfl :
i=1 !

P. SAKOV AND M. BOCQUET, Asynchronous data assimilation with the EnKF in presence of additive model error, Tellus A, 0

(2017), pp. 0-0. in preparation
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Asynchronous EnKF with additive model error

Asynchronous data assimilation for the EnKF

» Ensemble subspace representation, for i =1,... k:

xo = x5 +Adwo, AI(ADT=PZ, A1=0
xj = Mi15i(xi—1) +Alw;, AIANT=Q;, A71=0

» Compactification:
w = vec(Wo,...,Wg).

» Cost function in ensemble subspace:

J(w) = w'w |y — 2 (x)||f-+
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Asynchronous EnKF with additive model error

Asynchronous data assimilation for the EnKF

» Linearization (Gauss-Newton implied):
x=x"+Aw+O(|lw|*),

with
x" = vec ({///oai(xg)}/:o,...,k) )

and
A =vec(Ag,...,Ay),
(A3.0], =
AI'E [MileiAiflaAf’aO]a i:]-a"'7k_17
M1 A1, A]],  i=k
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Asynchronous EnKF with additive model error

Asynchronous data assimilation for the EnKF

» Cost function expansion:

Jow) = ww |y #6) —vw o),

where Y = vec <{H"A"}i:1«,m7k>‘
» Linear order analysis (AEnKF):

x* = x" + Aw*

A*=AT, T=D'?uU,
w* =D YTR! [y—%ﬂ(xf)} )
D=I1+YTR'Y.

» The computation of A; and Y can also be extrapolated to mild nonlinearity.
P. SAkov AND M. BOCQUET, Asynchronous data assimilation with the EnKF in presence of additive model error, Tellus A, 0

(2017), pp. 0-0. in preparation
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Outline

© Conclusions
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Conclusions

Conclusions

@ We have extended the iterative ensemble Kalman filter (IEnKF) to iterative
ensemble Kalman filter in presence of model error (IEnKF-Q).

@ It consistently outperforms ad hoc schemes that incorporate model error into the
IEnKF with the L95 model, and any other EnKF-based scheme.

@ We have extended the asynchronous ensemble Kalman filter (AEnKF) to the
asynchronous ensemble Kalman filter in presence of model error (AEnKF-Q).

@ In practice, one would have to estimate Q on top of these developments. A
currently flourishing topic!

12th EnkF workshop, Os, Norway, 12-14 June 2017 30/ 32



Conclusions

Final word

Thank you for your attention!

12th EnkF workshop, Os, Norway, 12-14 June 2017 31/32



References

References

1

12]
3]

[4]

5]

6]

7]
8]

191

M. BOCQUET AND P. SAKOV, Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems, Nonlin. Processes
Geophys., 19 (2012), pp. 383-399.

M. BOCQUET AND P. SAKOV, An iterative ensemble Kalman smoother, Q. J. R. Meteorol. Soc., 140 (2014), pp. 1521-1535

B. R. HuNT, E. J. KOSTELICH, AND 1. SZUNYOGH, Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter,
Physica D, 230 (2007), pp. 112-126.

E. N. LoreNz AND K. A. EMANUEL, Optimal sites for supplementary weather observations: simulation with a small model, J. Atmos. Sci., 55
(1998), pp. 399-414.

P. N. RAANES, A. CARRASSI, AND L. BERTINO, Extending the square root method to account for additive forecast noise in ensemble methods,
Mon. Wea. Rev., 143 (2015), pp. 3857-38730.

P. SAKOV AND M. BOCQUET, Asynchronous data assimilation with the EnKF in presence of additive model error, Tellus A, 0 (2017), pp. 0-0.
in preparation.

P. Sakov, G. EVENSEN, AND L. BERTINO, Asynchronous data assimilation with the EnKF, Tellus A, 62 (2010), pp. 24-29.

P. Sakov, J.-M. HAUSSAIRE, AND M. BOCQUET, An iterative ensemble Kalman filter in presence of additive model error, Q. J. R. Meteorol. Soc.,
0 (2017), pp. 0-0.
Submitted.

P. Sakov, D. S. OLIVER, AND L. BERTINO, An iterative EnKF for strongly nonlinear systems, Mon. Wea. Rev., 140 (2012), pp. 1988-2004.

12th EnkF workshop, Os, Norway, 12-14 June 2017 32/32



	The iterative ensemble Kalman filter (IEnKF)
	Theory of the IEnKF-Q
	Formulation
	Decoupling
	Base algorithm

	Numerics for the IEnKF-Q
	Asynchronous EnKF with additive model error
	Conclusions
	References

