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Assimilation in the unstable subspace (AUS)

Numerical results demonstrate that the skill of ensemble DA methods In
chaotic systems is related to dynamic instabilities [Ng et al. 2011].

Asymptotic properties of ensemble-based covariances relate to the multiplicity
and strength of unstable Lyapunov exponents [Sakov & Oke 2008; Carrassi et al. 2009].

Trevisan et al. proposed filtering methodology for dimensional reduction to
exploit this property called Assimilation in the Unstable Subspace.

The goal of AUS is to dynamically target
— corrections [Trevisan et al. 2010; Trevisan & Palatella 2011; Palatella & Trevisan 2015] and

- observations [Trevisan & Uboldi 2004; Carrassi et. al. 2007]

In data assimilation design to minimize the forecast uncertainty while
reducing the computational burden of DA.



A mathematical framework for AUS

A mathematical framework for AUS is established for perfect, linear models.

Asymptotically, the support of the KF forecast uncertainty is confined to the span
of the unstable-neutral BLVS [Gurumoorthy et al. 2017; Bocquet et al. 2017].

This is likewise demonstrated for the smoothing problem [Bocquet & Carrassi 2017].

This work extends the mathematical framework for AUS to linear, imperfect
models.

We bound the forecast uncertainty in terms of the dynamic expansion of errors
relative to the constraints due to observations, the precision therein.

We produce necessary and sufficient conditions for the boundedness of
forecast errors.

This work extends the central hypotheses of AUS, to model error.



The square root Kalman filter

* Linear model and observation processes are given by

Xk+1 = Mpr1Xg + Wi WVl N(O, Qk)
Vi+1 = Hpr1Xg + Vi1 v ~ N(0,Ry)

* The square root forecast error Ricatti equation Is given
[Bocquet et al. 2017]

X —1
Pry1 = M1 Xe (I + Xt HE R, THe Xy) XM + Qi

where P, = X, X and X;, € R"*"is a rank 7" square root
[Tippet et al. 2008]. 4



Stabilizing errors with observations

* We represent the minimal observational constraint by
A i 5 A
Xl — Op (Rk QHka) Y. — mfk{ozk}
* \WWe will recursively apply the inequality
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Geometrically bounding the square root

 \We denote

Py = Qg

and bound the forecast covariance at time k: :
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Bounding forecast errors

» The projection of the forecast error is bounded in the it" backwards
Lyapunov vector whenever we have

€2>\i

1 + «

 The inequality is trivially true for any stable mode, even when v = ()
and there are no observations:
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Sufficient conditions for bounded forecast error

 If the anomaly dimension Is greater than the observational
dimension, then oo = 0.

« Let anomaly dimension < observational dimension, and

o>l

then the forecast error Is bounded [Grudzien et al. 2017].

|t was noted previously under ideal assumptions [carrassi et al. 2008],
we now prove this a generic condition for all perfect models:

If observations are confined to the unstable-neutral subspace, with the
above minimal precision, the forecast error of the (reduced rank)
Kalman filter [Bocquet et al. 2017] 1S uniformly bounded [Grudzien et al. 2017].



Necessary conditions for bounded forecast error

 The maximal observational constraint is described by

el 2
B = 01 (Rk QHka) B £ sup,{Bk}

» Assume the forecast error is uniformly bounded, then

k N
M. Mi, < P. < oo
; (1 +5) AL S e g

from which we recover a necessary condition:

the maximal observational constraint is stronger than the maximal
iInstability which forces the model error [Grudzien et al. 2017].



Dynamics of uncertainty in the stable subspace

The uncertainty in the stable BLVs is bounded independently of
filtering [Grudzien et al. 2017].

Still, the uniform bound may be impractically large. In a reduced
rank square root approximation, the error in the stable subspace may
cause the filter to diverge.

This was previously noted, due to the non-linear interactions of
uncertainty in perfect models ng et al. 2011].

This was corrected as a second order term in EKF-AUS for nonlinear
perfect models [Palatella & Trevisan 2015].

We demonstrate this is an irreducible, first order effect in the

presence of model error. i



The model invariant evolution of uncertainty

» Suppose model error Is time invariant and spatially
uncorrelated in a basis of backwards Lyapunov vectors.

» The evolution of the freely forecasted uncertainty in the ;"
BLV is given by

7]; é Z H (Tr]];l)z H2 [Grudzien et al. 2017].

* For any stable BLV, the free uncertainty can be stably
computed recursively by QR factorizations [Grudzien et al. 2017].

11



Transient instability in the stable subspace

* We study discrete,
linearized Lorenz '96
with 10 dimensions
and 6 stable modes.

. Positive - -. Negative

- F=355, A — — 0.0439

!

* \We vary the forcing
parameter F.

» Variabllity in the local
Lyapunov exoponents
of the stable modes
forces transient
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Dynamically selected observations

Observations should minimize the forecast uncertainty given a fixed
dimension of the observational space d < n .

For an arbitrary, linear observation operator we take the QR
factorization of the transpose

HE = UG, — H; — GEUE

This Is the choice of an optimal subspace representation of the
uncertainty, given by the span of the columns of Uy .

In perfect models, we know this is the span of the unstable and
neutral backwards Lyapunov vectors [Bocquet et al. 2017]. Our work
verifies the dynamic observation paradigm utilizing bred vectors in
AUS [Carrassi et al. 2008].
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Dynamic observations and the forecast
covariance

e—e Backwards *—kx Random —a Fixed >—>  Full
d=4 - d=5
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The unconstrained stable forecast

e—e Backwards *—x Random =—a Fixed >—>  Full
d=4 - d=5
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Conclusion

 AUS methodology can be used for reduced rank square root filters
In the presence of model error, following this framework:

- Dynamically observe the unstable, neutral and weakly stable modes.

— Corrections to the state estimate should account for the growth of error in
all of the above directions.

- Observations in this space should should satisfy a minimum precision:

a>e |

- Unfiltered error in stable modes is bounded by the freely evolved
uncertainty, and can be estimated offline.

* Implementing the above framework is ongoing work.
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