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Introduction

The L1 and L2 norms have been successful as regularization terms in data assim-

ilation (Freitag et al., 2010). The first one promotes a sparse solution while the

second one promotes a smoother solution. The solution may however possess a

structure ”in between” that we call ”quasi-sparse”. The Lp-norm with 1 < p < 2
aims at making a compromise between these 2 norms. Moreover, the L2 and L1
norms introduce oscillations in the solution, and it has been shown that considering

the Lp-norm with 1 < p < 2 can mitigate these oscillations (Schuster et al., 2012).

Finally, the use of the Lp-norm is also motivated by the statistical distribution of

physical variables, when it follows a generalized Gaussian distribution instead of

the Laplace distribution or the more classical Normal distribution.

The penalized 4DVar
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The regularization can be in any basis of interest

The operator Φ stands for the projection of x in the basis where sparsity is

expected (a Fourier, derivative, wavelet basis...)

How to choose λ and p?

If the regularization is motivated by the statistical distribution of the

variables, these parameters can be derived from the modelization of the

problem.

Otherwise p depends on the expected structure of the solution. The more

sparse the solution is, the closer to 1 p should be chosen.

λ can be estimated with the L-curve method or the Morozov discrepancy

principle.

Statistical benefits of the regularization

The distribution of the variable may follow a generalized Gaussian distribution:

cases of

the underwater acoustic noise (Banerjee et al., 2013).

the wind velocity gradient (Stengel et al., 2019)

the derivative of the Beaufort sea ice concentration (Asadi et al., 2019).

The PDF of the generalized Gaussian distribution
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with µ position parameter, α scale parameter, p shape parameter.

Assessment of the numerical benefits on data assimilation
experiments

We show the benefits of this regularization on two data assimilation setups: a 1D

toy model based on the advection equation, which allowed to study the effect of

the penalization on an easily tuned experiment, and a more realistic 2D experience

based on the shallow water equations, which allowed to both put to the test the

behavior of the regularization and highlight the algorithms proposed to minimize

(1) for a higher dimension problem. The results can be found in [1] and [2].

A 1D advection data assimilation experiment

Zoom on b : ”Staircase ef-

fect” introduced by the L1-

norm.

Zoom on c : Oscillations in-

troduced by the L2-norm.

A 2D shallowwater data assimilation experiment
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Figure 3.

Figure 1 : Analysis obtained by

minimizing the regularized 4DVar

with a dual-space non linear

conjugate gradient.

Figure 2 : Analysis obtained by

minimizing the 4DVar without

Lp-norm regularization with

preconditioned conjugate gradient.

Figure 3 : Truth.

Quasi-sparse signals in practical applications

Figure 4. Sea ice concentration (data collected by EUMETSAT)

other examples of quasi-sparse signals: Plankton concentration (A. Samuelsen et

al., Hurricane-driven alteration in plankton community size structure in the Gulf of Mex-

ico: A modeling study), sargassum concentration, meteorological fronts (Freitag et

al., 2013)...

How to minimize the penalized 4DVar?

A plain gradient descent would work but is slow. The right mathematical frame-

work to minimize a functional penalized by an Lp-norm with 1 < p < 2 is a

Banach space (Schuster et al., 2012).

How to do a gradient descent in a Banach space?

Suppose x ∈ Lp. The following equation is not well defined:

xk+1 = xk︸︷︷︸
∈X

+ αk −f ′
k︸︷︷︸

∈X∗

. (2)

We need to transport the direction in the topological dual space (Lq, with
1
p + 1

q =
1):

p0 = −f ′
0, (3)

x∗
k+1 = x∗

k + αkpk, (4)

xk+1 = Jq(x∗
k+1), (5)

pk+1 = −f ′
k+1. (6)

Or to transport the iterate in the primal space:

p0 = −Jq(f ′
0) (7)

xk+1 = xk + αkpk, (8)

pk+1 = Jq(−f ′
k+1). (9)

References

[1] A. Bernigaud, S. Gratton, F. Lenti, E. Simon, and O. Sohab.

Lp-norm regularization in variational data assimilation.

Quarterly Journal of the Royal Meteorological Society, 147:2067–2081, 2021.

[2] A. Bernigaud, S. Gratton, and E. Simon.

A non-linear conjugate gradient in dual space for Lp-norm regularized non-linear least squares with application in

data assimilation.

To be published.

Poster Session antoine.bernigaud@nersc.no

mailto:youremail@yale.edu

