Toward consistent nonlinear filtering and smoothing via measure transport

Ricardo Baptista¹

Joint work with Alessio Spantini², Youssef Marzouk², Max Ramgraber², Mathieu Le Provost³

> ¹Computing + Mathematical Sciences California Institute of Technology

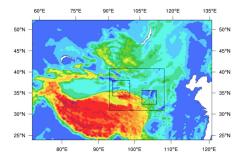
²Center for Computational Science and Engineering Massachusetts Institute of Technology

> ³Department of Computer Science Long Island University

> > EnKF Workshop

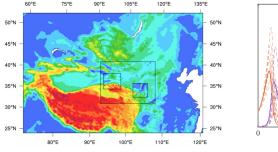
May 4, 2023

- **Goal**: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

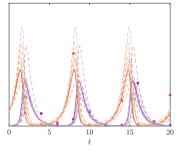


Source: NCAR ensemble wind forecast

- **Goal**: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

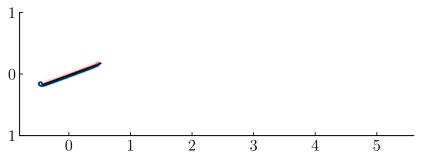


Source: NCAR ensemble wind forecast

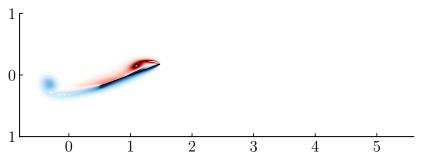


Epidemiological forecast

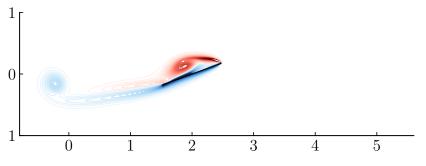
- **Goal**: Sequential state estimation in a Bayesian setting
- ► **Applications**: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.



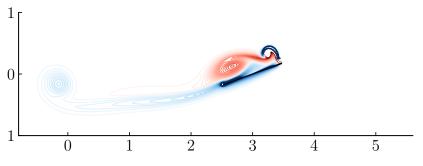
- **Goal**: Sequential state estimation in a Bayesian setting
- ► **Applications**: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.



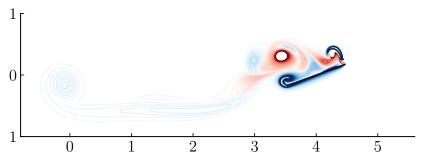
- **Goal**: Sequential state estimation in a Bayesian setting
- ► **Applications**: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.



- **Goal**: Sequential state estimation in a Bayesian setting
- ► **Applications**: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

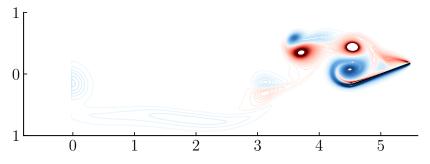


- **Goal**: Sequential state estimation in a Bayesian setting
- ► **Applications**: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

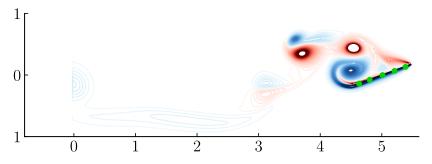


Vortex shedding around an aircraft wing

- **Goal**: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

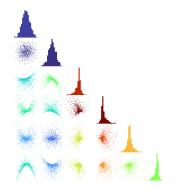


- **Goal**: Sequential state estimation in a Bayesian setting
- Applications: Weather prediction, oceanography, finance, population dynamics, pharmacology, robotics, aerodynamics, etc.

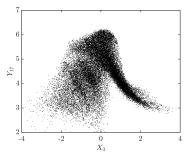


Vortex shedding around an aircraft wing

- Non-Gaussianity can include multi-modality and/or tail-heaviness
- Mathieu's talk (this morning) will address heavy-tailed distributions

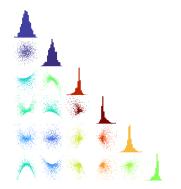


Lorenz-63 smoothing ensemble

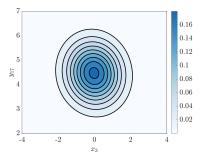


(**X**, **Y**) distribution in additive manufacturing model [B et al., 2022]

- Non-Gaussianity can include multi-modality and/or tail-heaviness
- Mathieu's talk (this morning) will address heavy-tailed distributions

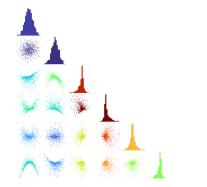


Lorenz-63 smoothing ensemble



(**X**, **Y**) distribution in additive manufacturing model [B et al., 2022]

- Non-Gaussianity can include multi-modality and/or tail-heaviness
- Mathieu's talk (this morning) will address heavy-tailed distributions



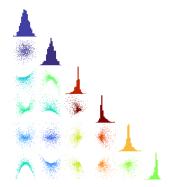
0.160.140.12 -5 0.1 *9*17 0.08 0.06 0.04 -3 0.02 -4 -2 0 2 x_2

Lorenz-63 smoothing ensemble

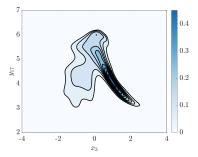
(**X**, **Y**) distribution in additive manufacturing model [B et al., 2022]

Takeaway: Gaussian approximations under-predict data informativeness

- ► Non-Gaussianity can include multi-modality and/or tail-heaviness
- Mathieu's talk (this morning) will address heavy-tailed distributions



Lorenz-63 smoothing ensemble



(X, Y) distribution in additive manufacturing model [B et al., 2022]

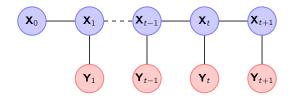
Takeaway: Gaussian approximations under-predict data informativeness **Goal**: Develop consistent inference methods for non-Gaussian problems

Baptista (rsb@caltech.edu)

Sequential Bayesian inference

State-space models

- States follow model dynamics $\pi_{\mathbf{X}_t | \mathbf{X}_{t-1}}$

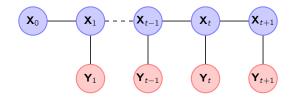


Goal: Recursively sample distributions $\pi_{\mathbf{X}_t|\mathbf{y}_1^*,...,\mathbf{y}_t^*}$ or $\pi_{\mathbf{X}_{1:t}|\mathbf{y}_1^*,...,\mathbf{y}_t^*}$

Sequential Bayesian inference

State-space models

- States follow model dynamics $\pi_{\mathbf{X}_t | \mathbf{X}_{t-1}}$

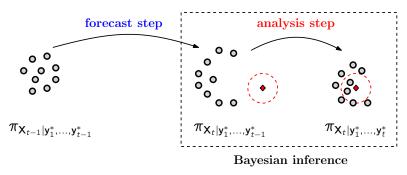


Goal: Recursively sample distributions $\pi_{\mathbf{X}_t|\mathbf{y}_1^*,...,\mathbf{y}_t^*}$ or $\pi_{\mathbf{X}_{1:t}|\mathbf{y}_1^*,...,\mathbf{y}_t^*}$

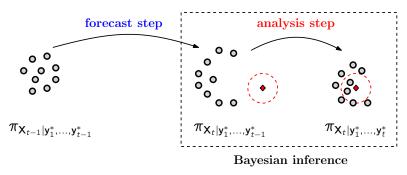
Common challenges leading to non-Gaussianity

- Nonlinear dynamical models or observation operators
- Sparse observations in space and time

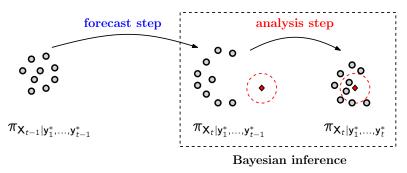
Approach: Approximate distributions using limited samples



Approach: Approximate distributions using limited samples



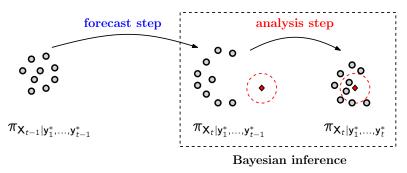
Approach: Approximate distributions using limited samples



Ensemble Kalman filters and smoothers

- Analysis step updates particles by estimating a linear transformation
- Inconsistent for capturing Bayesian solution

Approach: Approximate distributions using limited samples

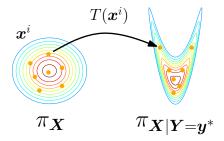


Ensemble Kalman filters and smoothers

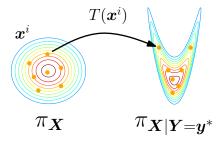
- Analysis step updates particles by estimating a linear transformation
- Inconsistent for capturing Bayesian solution

Goal: Perform analysis consistently and robustly in non-Gaussian settings

Idea: Find map T that take samples from prior π_X to posterior $\pi_{X|Y}$



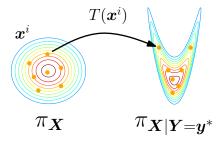
Idea: Find map T that take samples from prior π_X to posterior $\pi_{X|Y}$



Plan for this talk:

1 Maps for filtering $\mathbf{X} = \mathbf{X}_t$?

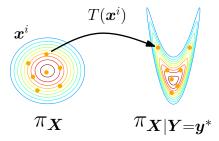
Idea: Find map T that take samples from prior π_X to posterior $\pi_{X|Y}$



Plan for this talk:

- **1** Maps for filtering $\mathbf{X} = \mathbf{X}_t$?
- **2** Maps for smoothing $\mathbf{X} = \mathbf{X}_{1:t}$?

Idea: Find map T that take samples from prior π_X to posterior $\pi_{X|Y}$

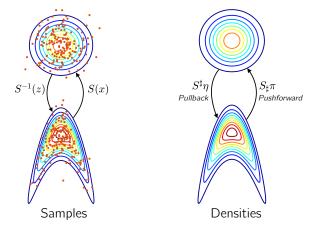


Plan for this talk:

- **1** Maps for filtering $\mathbf{X} = \mathbf{X}_t$?
- **2** Maps for smoothing $\mathbf{X} = \mathbf{X}_{1:t}$?
- **③** Leveraging structure in T to tackle high-dimensional problems

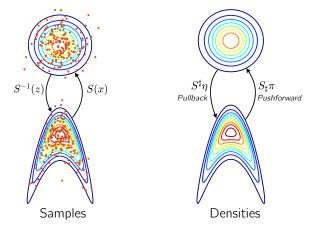
Transport maps characterize distributions

- Transport map S induces a deterministic coupling between a target density π and a reference density η (e.g., standard normal)
 - Generate cheap and independent samples: $\mathbf{x} \sim \pi \Leftrightarrow S(\mathbf{x}) \sim \eta$
 - Evaluate the target density: $\pi(\mathbf{x}) = S^{\sharp}\eta(\mathbf{x}) := \eta \circ S(\mathbf{x}) |\det \nabla S(\mathbf{x})|$



Transport maps characterize distributions

- Transport map S induces a deterministic coupling between a target density π and a reference density η (e.g., standard normal)
 - Generate cheap and independent samples: $\mathbf{z} \sim \eta \Leftrightarrow S^{-1}(\mathbf{z}) \sim \pi$
 - Evaluate the target density: $\pi(\mathbf{x}) = S^{\sharp}\eta(\mathbf{x}) \coloneqq \eta \circ S(\mathbf{x}) |\det \nabla S(\mathbf{x})|$



Monotone triangular maps

As a building block, consider the Knothe-Rosenblatt rearrangement

$$S(\mathbf{x}) = \begin{bmatrix} S_1(x_1) \\ S_2(x_1, x_2) \\ \vdots \\ S_d(x_1, x_2, \dots, x_d) \end{bmatrix}$$

As a building block, consider the Knothe-Rosenblatt rearrangement

$$S(\mathbf{x}) = \begin{bmatrix} S_1(x_1) \\ S_2(x_1, x_2) \\ \vdots \\ S_d(x_1, x_2, \dots, x_d) \end{bmatrix}$$

- Unique under mild assumptions on π and η
- ② Invertibility is guaranteed by one-dimensional monotonicity $\partial_k S_k > 0$
- **3** $S^{-1}(\mathbf{z})$ and det $\nabla S(\mathbf{x})$ are simple to evaluate
- Sector Component S_k characterizes one marginal conditional

$$\pi_{\mathbf{X}} = \pi_{\mathbf{X}_1} \pi_{\mathbf{X}_2 | \mathbf{X}_1} \cdots \pi_{\mathbf{X}_d | \mathbf{X}_1, \dots, \mathbf{X}_{d-1}}$$

Learning expressive triangular maps from samples

Given target density π and standard Gaussian $\eta,$

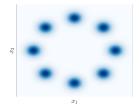
$$\min_{S} \quad \mathsf{D}_{\mathsf{KL}}(\pi || S^{\sharp} \eta)$$

$$\Leftrightarrow \min_{\{s: \partial_{k} s > 0\}} \mathbb{E}_{\pi} \left[\frac{1}{2} s(\mathbf{x}_{1:k})^{2} - \log |\partial_{k} s(\mathbf{x}_{1:k})| \right] \forall k$$

Given target density π and standard Gaussian η ,

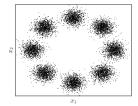
$$\min_{S} \quad \mathsf{D}_{\mathsf{KL}}(\pi || S^{\sharp} \eta)$$

$$\Leftrightarrow \min_{\{s:\partial_{k}s>0\}} \mathbb{E}_{\pi} \left[\frac{1}{2} s(\mathbf{x}_{1:k})^{2} - \log |\partial_{k}s(\mathbf{x}_{1:k})| \right] \forall k$$



Given samples $\{\mathbf{x}^i\}_{i=1}^n \sim \pi$, find \widehat{S}_k via

$$\underset{\{s:\partial_k s>0\}}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^{n} \left[\frac{1}{2} s(\mathbf{x}_{1:k}^{i})^2 - \log |\partial_k s(\mathbf{x}_{1:k}^{i})| \right]$$



Target density approximation: $\widehat{\pi}(\mathbf{x}) \coloneqq \widehat{S}^{\sharp} \eta(\mathbf{x})$

Triangular maps enable conditional sampling

Consider the triangular map pushing forward $\pi_{Y,X}$ to η_{Z_1,Z_2} :

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S^{\mathcal{Y}}(\mathbf{y}) \\ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

• $S^{\mathcal{Y}}$ pushes forward $\pi_{\mathbf{Y}}$ to $\eta_{\mathbf{Z}_1}$

► $S^{\mathcal{X}}(\mathbf{y}, \cdot)$ pushes forward $\pi_{\mathbf{X}|\mathbf{y}}$ to $\eta_{\mathbf{Z}_2}$ for any \mathbf{y}

Triangular maps enable conditional sampling

Consider the triangular map pushing forward $\pi_{\mathbf{Y},\mathbf{X}}$ to $\eta_{\mathbf{Z}_1,\mathbf{Z}_2}$:

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S^{\mathcal{Y}}(\mathbf{y}) \\ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

• $S^{\mathcal{Y}}$ pushes forward $\pi_{\mathbf{Y}}$ to $\eta_{\mathbf{Z}_1}$

• $S^{\mathcal{X}}(\mathbf{y}, \cdot)$ pushes forward $\pi_{\mathbf{X}|\mathbf{y}}$ to $\eta_{\mathbf{Z}_2}$ for any \mathbf{y}

Recipe for amortized inference:

To characterize posterior $\pi_{\mathbf{X}|\mathbf{y}^*} \propto \pi_{\mathbf{y}^*|\mathbf{X}} \pi_{\mathbf{X}}$ given an observation \mathbf{y}^* :

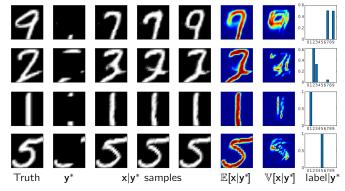
- \blacktriangleright Simulate from the model: $\mathbf{x}^{i} \sim \pi_{\mathbf{X}}, \, \mathbf{y}^{i} \sim \pi_{\mathbf{Y}|\mathbf{x}^{i}}$
- Estimate $S^{\mathcal{X}}$ from joint samples $(\mathbf{x}^i, \mathbf{y}^i) \sim \pi_{\mathbf{X}, \mathbf{Y}}$

► Simulate
$$\left.\widehat{S}^{\mathcal{X}}(\mathbf{y}^*,\cdot)^{-1}\right|_{\mathbf{z}^i} \sim \pi_{\mathbf{X}|\mathbf{y}^*}$$
 for $\mathbf{z}^i \sim \eta_{\mathbf{Z}_2}$

Related Work: Simulation-based or likelihood-free inference [Papamakarios & Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019]

Numerical example: image in-painting [Kovachki, B, et al., 2021]

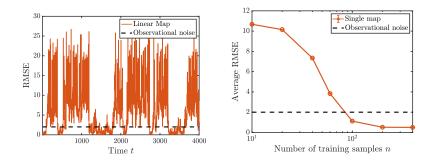
- **Goal**: Reconstruct image after removing its center section
- Use map to sample from the conditional distribution for the 14 × 14 center pixels of a 28 × 28 MNIST handwritten digit
- Estimate conditional mean and variance and classify digit probability



Note: Prior distributions in imaging problems have no analytic form

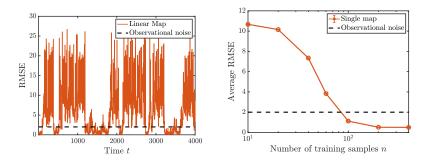
Lorenz-63 model

- Infer the hidden state given noisy point-wise observations
- With N = 50 samples, we can *at best* estimate linear maps
- Measure root-mean-squared error (RMSE) of ensemble mean



Lorenz-63 model

- Infer the hidden state given noisy point-wise observations
- With N = 50 samples, we can *at best* estimate linear maps
- Measure root-mean-squared error (RMSE) of ensemble mean



Takeaway: This approach yields large errors with limited samples

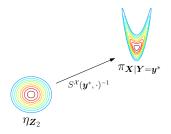
Baptista (rsb@caltech.edu)

Another approach: compose maps for sampling

For $\pi_{\mathbf{Y},\mathbf{X}}$ and $\eta_{\mathbf{Z}_1,\mathbf{Z}_2}$, consider the triangular map

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S^{\mathcal{Y}}(\mathbf{y}) \\ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

S^X(y, ·) pushes forward π_{X|y} to η_{Z₂} for any y
 S^X(y, x) pushes forward π_{Y,X} to η_{Z₂}

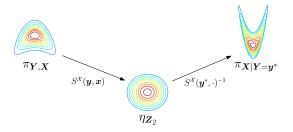


Another approach: compose maps for sampling

For $\pi_{\mathbf{Y},\mathbf{X}}$ and $\eta_{\mathbf{Z}_1,\mathbf{Z}_2}$, consider the triangular map

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S^{\mathcal{Y}}(\mathbf{y}) \\ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

S^X(y, ·) pushes forward π_{X|y} to η_{Z₂} for any y
 S^X(y, x) pushes forward π_{Y,X} to η_{Z₂}

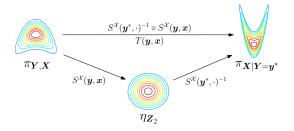


Another approach: compose maps for sampling

For $\pi_{\mathbf{Y},\mathbf{X}}$ and $\eta_{\mathbf{Z}_1,\mathbf{Z}_2}$, consider the triangular map

$$S(\mathbf{y}, \mathbf{x}) = \begin{bmatrix} S^{\mathcal{Y}}(\mathbf{y}) \\ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x}) \end{bmatrix}$$

S^X(y, ·) pushes forward π_{X|y} to η_{Z₂} for any y
 S^X(y, x) pushes forward π_{Y,X} to η_{Z₂}



The prior-to-posterior map that pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\pi_{\mathbf{X}|\mathbf{y}^*}$ is

$$T_{\mathbf{y}^*}(\mathbf{y}, \mathbf{x}) = S^{\mathcal{X}}(\mathbf{y}^*, \cdot)^{-1} \circ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})$$

The prior-to-posterior map that pushes $\pi_{\mathbf{Y},\mathbf{X}}$ to $\pi_{\mathbf{X}|\mathbf{y}^*}$ is

$$\mathcal{T}_{\mathbf{y}^*}(\mathbf{y}, \mathbf{x}) = S^{\mathcal{X}}(\mathbf{y}^*, \cdot)^{-1} \circ S^{\mathcal{X}}(\mathbf{y}, \mathbf{x})$$

Stochastic map algorithm:

- Estimate $S^{\mathcal{X}}$ using $(\mathbf{y}^i, \mathbf{x}^i) \sim \pi_{\mathbf{Y}, \mathbf{X}}$
- 2 Evaluate composed map $T_{\mathbf{y}^*}(\mathbf{y}, \mathbf{x})$ to approximately sample posterior

Forecast step

• Apply dynamics to generate forecast ensemble $(\mathbf{x}_t^f)^i \sim \pi_{\mathbf{X}_t | \mathbf{x}_{t-1}^i}$

Analysis step

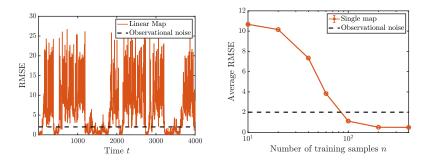
- **1** Sample observations $\mathbf{y}_t^i \sim \pi_{\mathbf{Y}_t|(\mathbf{x}_t^f)^i}$ using forecast samples
- 2 Estimate lower-triangular map S that couples $\pi_{\mathbf{Y}_t, \mathbf{X}_t}$ and $\mathcal{N}(\mathbf{0}, \mathbf{I})$

$$S(\mathbf{y}_t, \mathbf{x}_t) = \begin{bmatrix} S^{\mathcal{Y}}(\mathbf{y}_t) \\ S^{\mathcal{X}}(\mathbf{y}_t, \mathbf{x}_t) \end{bmatrix}$$

- **3** Compose maps $T_{\mathbf{y}_t^*}(\mathbf{y}_t, \mathbf{x}_t) = S^{\mathcal{X}}(\mathbf{y}_t^*, \cdot)^{-1} \circ S^{\mathcal{X}}(\mathbf{y}_t, \mathbf{x}_t)$
- **6** Generate analysis ensemble $\mathbf{x}_t^i = \mathcal{T}_{\mathbf{y}_t^*}(\mathbf{y}_t^i, \mathbf{x}_t^i)$ for i = 1, ..., N

Lorenz-63 model

- Infer the hidden state given noisy point-wise observations
- With N = 50 samples, we can *at best* estimate linear maps
- Measure root-mean-squared error (RMSE) of ensemble mean

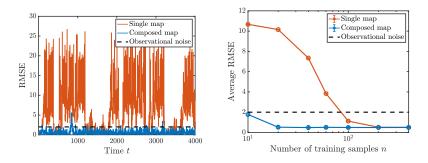


Takeaway: Composed maps have stable RMSE with limited samples

Baptista (rsb@caltech.edu)

Lorenz-63 model

- Infer the hidden state given noisy point-wise observations
- With N = 50 samples, we can *at best* estimate linear maps
- Measure root-mean-squared error (RMSE) of ensemble mean



Takeaway: Composed maps have stable RMSE with limited samples

Baptista (rsb@caltech.edu)

Generalization of the EnKF

▶ Restricting $S^{\mathcal{X}}$ to be affine in $\mathbf{x}_t, \mathbf{y}_t$, we recover the transformation

$$\mathcal{T}_{\mathbf{y}_t^*}(\mathbf{y}_t, \mathbf{x}_t) = \mathbf{x}_t - \Sigma_{\mathbf{x}_t, \mathbf{y}_t} \Sigma_{\mathbf{y}_t}^{-1}(\mathbf{y}_t - \mathbf{y}_t^*),$$

Transport maps allow for the gradual introduction of nonlinear terms

► Nonlinear maps $T_{\mathbf{y}_t^*}$ capture non-Gaussian structure of $\pi_{\mathbf{Y}_t,\mathbf{X}_t}$

Generalization of the EnKF

▶ Restricting $S^{\mathcal{X}}$ to be affine in $\mathbf{x}_t, \mathbf{y}_t$, we recover the transformation

$$\mathcal{T}_{\mathbf{y}_t^*}(\mathbf{y}_t, \mathbf{x}_t) = \mathbf{x}_t - \Sigma_{\mathbf{x}_t, \mathbf{y}_t} \Sigma_{\mathbf{y}_t}^{-1} (\mathbf{y}_t - \mathbf{y}_t^*),$$

Transport maps allow for the gradual introduction of nonlinear terms

► Nonlinear maps $T_{\mathbf{y}_t^*}$ capture non-Gaussian structure of $\pi_{\mathbf{Y}_t,\mathbf{X}_t}$

Example map parameterization

Each component is the sum of nonlinear univariate functions

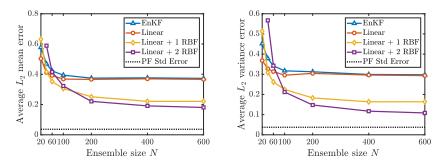
$$S_k(z_1,\ldots,z_k)=\mathbf{u}_1(z_1)+\cdots+\mathbf{u}_k(z_k),$$

where $\mathbf{u}_i(z) = u_{i,0}z + \sum_{j=1}^p u_{ij} \mathcal{N}(z;\xi_j,\sigma_j^2)$ and $\mathbf{u}_k(z_k)$ is monotone

Nonlinear maps capture filtering distribution

Lorenz-63 model

- d = 3 with $\Delta t_{obs} = 0.1$ and fully-observed state
- Observations follow $\mathbf{y}_t = \mathbf{x}_t + \boldsymbol{\eta}_t$ with $\boldsymbol{\eta}_t \sim \mathcal{N}(\mathbf{0}, 4\mathbf{I})$
- Measure root-mean-squared-error RMSE $(t) = \|\mathbf{x}_t^* \mathbb{E}[\mathbf{x}_t|\mathbf{y}_{1:t}^*]\|_2/\sqrt{d}$
- Compare statistics to a particle filter (PF) with 1M samples



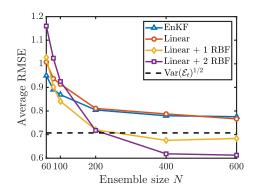
Improved posterior estimates is also stable with increasing Δt_{obs}

Baptista (rsb@caltech.edu)

Nonlinear maps improve tracking

Lorenz-96 model: chaotic dynamics

- 40 states, 20 observations, and $\Delta t_{obs} = 0.4$ (large!)
- ► Measure average RMSE (*left*) over 2000 assimilation cycles
- Parametrize maps with increasing nonlinearity using RBFs

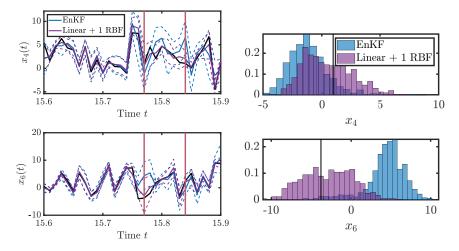


Nonlinear maps also improve estimates of posterior moments

Baptista (rsb@caltech.edu)

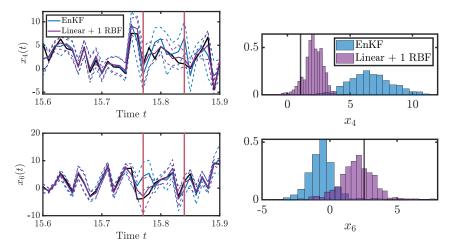
Nonlinear maps better capture uncertainty in true state

- Tracking two marginals of Lorenz-96 system at two assimilation times
- Compare ensemble distribution from EnKF and nonlinear maps



Nonlinear maps better capture uncertainty in true state

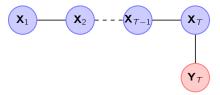
- Tracking two marginals of Lorenz-96 system at two assimilation times
- Compare ensemble distribution from EnKF and nonlinear maps



Extension to smoothing

Goal: Characterize full smoothing distribution $\pi_{\mathbf{X}_{1:T}|\mathbf{y}_{1:T}}$ or a marginal

Consider update for all states given a single observation at time T



Ensemble Transport Smoother: Apply stochastic map algorithm on joint states over time:

$$\mathcal{T}_{\mathbf{y}_{\mathcal{T}}^*}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{1:\mathcal{T}}) = S^{\mathcal{X}}(\mathbf{y}_{\mathcal{T}}^*, \cdot)^{-1} \circ S^{\mathcal{X}}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{1:\mathcal{T}})$$

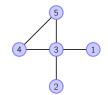
• Ordering of states in $S^{\mathcal{X}}$ defines different smoothing algorithms

Exploiting the Markov structure of the states yields sparse maps

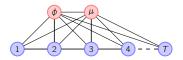
Transport maps exploit conditional independence

Theorem: Sparsity of triangular maps [Spantini et al., 2018]

Conditional independence of target distribution π (encoded by graph) defines functional dependence of S such that $S^{\sharp}\eta = \pi$



Markov structure of 5-dimensional distribution



Markov structure of hidden Markov model

Sparsity of $\partial_j S_k$

Sparsity of $\partial_j S_k$

Baptista (rsb@caltech.edu)

Transport maps exploit conditional independence

Theorem: Sparsity of triangular maps [Spantini et al., 2018]

Conditional independence of target distribution π (encoded by graph) defines functional dependence of S such that $S^{\sharp}\eta = \pi$

$$\begin{bmatrix} S_1(x_1) \\ S_2(x_1, x_2) \\ S_3(x_1, x_2, x_3) \\ S_4(x_1, x_2, x_3, x_4) \end{bmatrix} \xrightarrow{\rightarrow} \pi(x_1) \\ \rightarrow \pi(x_2|x_1) \\ \rightarrow \pi(x_3|x_1, x_2) = \pi(x_3|x_2) \quad X_3 \perp X_1|X_2 \\ \rightarrow \pi(x_4|x_1, x_2, x_3) = \pi(x_4|x_3) \quad X_4 \perp (X_1, X_2)|X_3$$

Two new classes of smoothers [Ramgraber, B et al., 2022]

Backwards-in-time: uses the ordering $\mathbf{x}_{\mathcal{T}}, \ldots, \mathbf{x}_1$

$$S^{\mathcal{X}}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{1:\mathcal{T}}) \stackrel{C'}{=} \begin{bmatrix} S_{\mathcal{T}}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{\mathcal{T}}) \\ S_{\mathcal{T}-1}(\mathbf{x}_{\mathcal{T}}, \mathbf{x}_{\mathcal{T}-1}) \\ \vdots \\ S_{1}(\mathbf{x}_{2}, \mathbf{x}_{1}) \end{bmatrix} \begin{bmatrix} \mathbf{v}_{\mathbf{x}_{\mathbf{x}}} \\ \mathbf{v}_{\mathbf{x}} \\ \mathbf{v}_{\mathbf{x}} \\ \mathbf{v}_{\mathbf{x}} \\ \mathbf{v}_{\mathbf{x}} \\ \mathbf$$

(CI) exploits chain structure: $\mathbf{x}_{1:T-1} \perp \mathbf{y}_T | \mathbf{x}_T$ and $\mathbf{x}_{1:s-1} \perp \mathbf{x}_{s+1:T} | \mathbf{x}_s$

Two new classes of smoothers [Ramgraber, B et al., 2022]

Backwards-in-time: uses the ordering $\mathbf{x}_{\mathcal{T}}, \ldots, \mathbf{x}_1$

$$S^{\mathcal{X}}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{1:\mathcal{T}}) \stackrel{Cl}{=} \begin{bmatrix} S_{\mathcal{T}}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{\mathcal{T}}) \\ S_{\mathcal{T}-1}(\mathbf{x}_{\mathcal{T}}, \mathbf{x}_{\mathcal{T}-1}) \\ \vdots \\ S_{1}(\mathbf{x}_{2}, \mathbf{x}_{1}) \end{bmatrix} \cdot \begin{bmatrix} \mathbf{y}_{\mathbf{x}} \\ \mathbf{y}_{\mathbf{x}} \\ \mathbf{x}_{\mathbf{x}} \\ \mathbf{x}_{$$

(CI) exploits chain structure: $\mathbf{x}_{1:T-1} \perp \mathbf{y}_T | \mathbf{x}_T$ and $\mathbf{x}_{1:s-1} \perp \mathbf{x}_{s+1:T} | \mathbf{x}_s$

Forwards-in-time: uses the ordering $\mathbf{x}_1, \ldots, \mathbf{x}_T$

$$S^{\mathcal{X}}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{1:\mathcal{T}}) \stackrel{Cl}{=} \begin{bmatrix} S_{1}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{1}) \\ S_{2}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{1}, \mathbf{x}_{2}) \\ \vdots \\ S_{\mathcal{T}}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{\mathcal{T}-1}, \mathbf{x}_{\mathcal{T}}) \end{bmatrix} \xrightarrow{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}_{\mathbf{x}}} \xrightarrow{\mathbf{x}_{\mathbf{x}}}_{\mathbf{x}_{\mathbf{x}}}$$
(CI) exploits chain structure: $\mathbf{x}_{s} \perp \mathbf{x}_{1:s-2} | \mathbf{x}_{s-1}$ for $s \geq 2$

Two new classes of smoothers [Ramgraber, B et al., 2022]

Backwards-in-time: uses the ordering $\mathbf{x}_T, \ldots, \mathbf{x}_1$

$$S^{\mathcal{X}}(\mathbf{y}_{T}, \mathbf{x}_{1:T}) \stackrel{C'}{=} \begin{bmatrix} S_{T}(\mathbf{y}_{T}, \mathbf{x}_{T}) \\ S_{T-1}(\mathbf{x}_{T}, \mathbf{x}_{T-1}) \\ \vdots \\ S_{1}(\mathbf{x}_{2}, \mathbf{x}_{1}) \end{bmatrix} \cdot \begin{bmatrix} \mathbf{y}_{\mathbf{x}} \\ \mathbf{y}_{\mathbf{x}} \\ \mathbf{x}_{\mathbf{x}} \\ \mathbf{$$

(CI) exploits chain structure: $\mathbf{x}_{1:T-1} \perp \mathbf{y}_T | \mathbf{x}_T$ and $\mathbf{x}_{1:s-1} \perp \mathbf{x}_{s+1:T} | \mathbf{x}_s$

Forwards-in-time: uses the ordering $\mathbf{x}_1, \ldots, \mathbf{x}_T$

$$S^{\mathcal{X}}(\mathbf{y}_{T}, \mathbf{x}_{1:T}) \stackrel{CI}{=} \begin{bmatrix} S_{1}(\mathbf{y}_{T}, \mathbf{x}_{1}) \\ S_{2}(\mathbf{y}_{T}, \mathbf{x}_{1}, \mathbf{x}_{2}) \\ \vdots \\ S_{T}(\mathbf{y}_{T}, \mathbf{x}_{T-1}, \mathbf{x}_{T}) \end{bmatrix} \xrightarrow{\mathbf{y}_{\mathbf{x}}}_{\mathbf{y}_{\mathbf{x}} \times \mathbf{x}_{\mathbf{x}}}_{\mathbf{y}_{\mathbf{x}} \times \mathbf{x}_{\mathbf{x}}}_{\mathbf{y}_{\mathbf{x}} \times \mathbf{x}_{\mathbf{x}}}_{\mathbf{y}_{\mathbf{x}} \times \mathbf{x}_{\mathbf{x}}}_{\mathbf{y}_{\mathbf{x}} \times \mathbf{x}_{\mathbf{x}}}_{\mathbf{y}_{\mathbf{x}} \times \mathbf{x}_{\mathbf{x}}}$$

(CI) exploits chain structure: $\mathbf{x}_s \perp \perp \mathbf{x}_{1:s-2} | \mathbf{x}_{s-1}$ for $s \ge 2$

- Empirical results suggest backward-in-time accumulates less errors
- Forwards smoother constrains state trajectories by dynamics

Baptista (rsb@caltech.edu)

Focusing on backwards smoother

Sequential context: The joint decomposition simplifies

$$\pi(\mathbf{x}_{1:T}|\mathbf{y}_{1:T}^*) = \pi(\mathbf{x}_T|\mathbf{y}_{1:T}^*) \prod_{s=1}^{T-1} \pi(\mathbf{x}_s|\mathbf{x}_{s+1}, \mathbf{y}_{1:T}^*)$$
$$= \pi(\mathbf{x}_T|\mathbf{y}_{1:T}^*) \prod_{s=1}^{T-1} \pi(\mathbf{x}_s|\mathbf{x}_{s+1}, \mathbf{y}_{1:s}^*)$$

- Component S_s samples $\pi(\mathbf{x}_s | \mathbf{x}_{s+1}, \mathbf{y}_{1:s}^*)$
- We estimate S_s using filtering ensemble $(\mathbf{x}_s^i, \mathbf{x}_{s+1}^i) \sim \pi(\mathbf{x}_s, \mathbf{x}_{s+1} | \mathbf{y}_{1:s}^*)$

Generalization of the Ensemble RTS smoother

▶ Restricting $S^{\mathcal{X}}$ to be affine in $\mathbf{y}_t, \mathbf{x}_{1:t}$, we recover the transformation

$$\begin{aligned} \mathcal{T}_{\mathbf{y}_{\mathcal{T}}^*}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{\mathcal{T}}) &= \mathbf{x}_{\mathcal{T}} - \Sigma_{\mathbf{x}_{\mathcal{T}}, \mathbf{y}_{\mathcal{T}}} \Sigma_{\mathbf{y}_{\mathcal{T}}}^{-1} (\mathbf{y}_{\mathcal{T}} - \mathbf{y}_{\mathcal{T}}^*) \\ \mathcal{T}_{\mathbf{x}_{s+1}^*}(\mathbf{x}_s, \mathbf{x}_{s+1}) &= \mathbf{x}_s - \Sigma_{\mathbf{x}_s, \mathbf{x}_{s+1}} \Sigma_{\mathbf{x}_{s+1}}^{-1} (\mathbf{x}_{s+1} - \mathbf{x}_{s+1}^*), \qquad s < t \end{aligned}$$

Baptista (rsb@caltech.edu)

Special case: fixed-point smoothing

Idea: Apply backwards-in-time smoother to $\pi(\mathbf{x}_s, \mathbf{x}_T | \mathbf{y}_{1:T^*})$ for s < T

$$S^{\mathcal{X}}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{s}, \mathbf{x}_{\mathcal{T}}) \stackrel{Cl}{=} \begin{bmatrix} S_{\mathcal{T}}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{\mathcal{T}}) \\ S_{s}(\mathbf{x}_{\mathcal{T}}, \mathbf{x}_{s}) \end{bmatrix}$$

Estimate map using augmented filtering ensemble π(x_s, x_t|y_{1:t-1})
 Pushing forward through composed maps samples π(x_s, x_t|y_{1:t})

Special case: fixed-point smoothing

Idea: Apply backwards-in-time smoother to $\pi(\mathbf{x}_s, \mathbf{x}_T | \mathbf{y}_{1:T^*})$ for s < T

$$S^{\mathcal{X}}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{s}, \mathbf{x}_{\mathcal{T}}) \stackrel{Cl}{=} \begin{bmatrix} S_{\mathcal{T}}(\mathbf{y}_{\mathcal{T}}, \mathbf{x}_{\mathcal{T}}) \\ S_{s}(\mathbf{x}_{\mathcal{T}}, \mathbf{x}_{s}) \end{bmatrix}$$

Estimate map using augmented filtering ensemble π(x_s, x_t|y^{*}_{1:t-1})
 Pushing forward through composed maps samples π(x_s, x_t|y^{*}_{1:t})

Generalization of the ensemble Kalman smoother (EnKS) For affine S^x , the combined composed map recovers the transformation

$$\mathbf{x}_{s}^{*} = \mathbf{x}_{s} - \Sigma_{\mathbf{x}_{s},\mathbf{y}_{t}} \Sigma_{\mathbf{y}_{t}}^{-1} (\mathbf{y}_{t} - \mathbf{y}_{t}^{*})$$

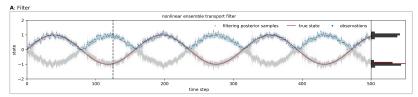
Key feature for affine maps: Update each state variable in parallel

Takeaway: Non-linear transport maps generalize linear smoothers

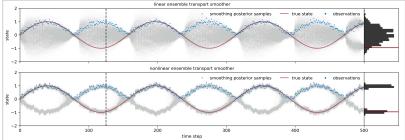
Baptista (rsb@caltech.edu)

Nonlinear smoothers capture bimodal distributions

- Sinusoidal state x_t with observation $y_t = |x_t + \gamma|$ for $\gamma \sim \mathcal{N}(0, 0.1)$
- Infer state using random walk model without knowing true dynamics
- Backward smoother is initialized from nonlinear transport filter



B: Smoothers

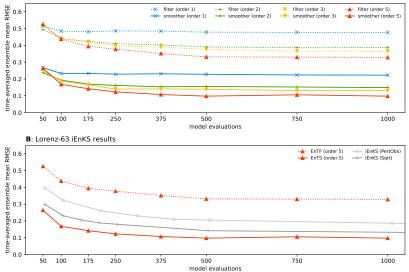


Baptista (rsb@caltech.edu)

Nonlinear smoothers improve state estimation

Lorenz-63 model

A: Lorenz-63 EnTF and EnTS results



So far: Transport maps are consistent for sampling non-Gaussian filtering and smoothing distributions without requiring importance weights

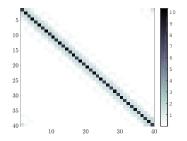
So far: Transport maps are consistent for sampling non-Gaussian filtering and smoothing distributions without requiring importance weights

How do we compute transport maps given small ensemble sizes?

- Localize estimators with approximate Markov structure
- Targeted non-linearity using hybrid nonlinear+linear maps
- **③** Restrict inference to relevant low-dimensional subspaces

1. Transport maps are easy to "localize" in high dimensions

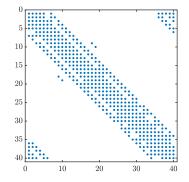
Many spatial fields satisfy approximate Markov properties



Inverse covariance matrix for Lorenz-96 model forecast is **sparse**

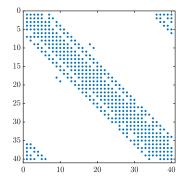
1. Transport maps are easy to "localize" in high dimensions

Many spatial fields satisfy approximate Markov properties



Inverse covariance matrix for Lorenz-96 model forecast is **sparse**

Many spatial fields satisfy approximate Markov properties



Inverse covariance matrix for Lorenz-96 model forecast is **sparse** Idea: Regularize the estimation of S by imposing sparsity:

$$\widehat{S}(\mathbf{x}) = \begin{bmatrix} \widehat{S}^{1}(x_{1}) \\ \widehat{S}^{2}(x_{1}, x_{2}) \\ \widehat{S}^{3}(, x_{2}, x_{3}) \\ \widehat{S}^{4}(, x_{3}, x_{4}) \end{bmatrix}$$

Heuristic: Let S^k depend on neighboring variables (x_j)_{j<k} that are physically close to x_k:

$$\widehat{S}^k(x_1,\ldots,x_k)\approx \widehat{S}^k(x_{N(k)},x_k)$$

2. Structured hybrid linear and nonlinear maps

Local-likelihood models: Scalar observation $y \sim \pi_{Y|X_1}$

$$T(y, \mathbf{x}) = \begin{bmatrix} T_1(y, x_1) \\ \vdots \\ T_l(x_1, \dots, x_l) \\ L_{l+1}(x_1, \dots, x_{l+1}) \\ \vdots \\ L_d(x_1, \dots, x_d) \end{bmatrix} \begin{cases} \text{Nonlinear maps} \\ \text{Affine maps} \\ \text{EnKF update} \end{cases}$$

Idea: For conditionally Gaussian models, use nonlinear updates T_k for state variables $\mathbf{x}_{1:l}$ and use linear updates L_k for $\mathbf{x}_{l+1:d}$

2. Structured hybrid linear and nonlinear maps

Local-likelihood models: Scalar observation $y \sim \pi_{Y|X_1}$

$$T(y, \mathbf{x}) = \begin{bmatrix} T_1(y, x_1) \\ \vdots \\ T_l(x_1, \dots, x_l) \\ L_{l+1}(x_1, \dots, x_{l+1}) \\ \vdots \\ L_d(x_1, \dots, x_d) \end{bmatrix} \begin{cases} \text{Nonlinear} \\ \text{maps} \end{cases}$$
Affine maps: EnKF update

Idea: For conditionally Gaussian models, use nonlinear updates T_k for state variables $\mathbf{x}_{1:l}$ and use linear updates L_k for $\mathbf{x}_{l+1:d}$

Special cases:

- ▶ l = 1: Nonlinear T_1 and keeping all other components affine recovers the rank histogram filter [Andersen 2010]
- With decay in correlation, L_{l+1}, \ldots, L_d reverts to an identity map

See Max's talk (today) on adapting map complexity to ensemble size!

3. Low-rank updates via an example in turbulent flows

Inference problem:

- States x_t: Positions and strengths of point vortices
- Observations y_t: Pressure observations along airfoil

Truth from CFD/ experiment

Challenges:

- High-dimensional states and observations d = 180 and m = 50
- Observations are non-local: \mathbf{y}_t is related to all \mathbf{x}_t by Poisson equation
- Limited ensemble of size $N = \mathcal{O}(100)$

Main ideas

- Only part of the state $\mathbf{x}_r = U_r^T \mathbf{x}$ is informed by the observations
- Only part of the observation $\mathbf{y}_s = V_s^T \mathbf{y}$ is relevant to the states

Main ideas

- Only part of the state $\mathbf{x}_r = U_r^T \mathbf{x}$ is informed by the observations
- Only part of the observation $\mathbf{y}_s = V_s^T \mathbf{y}$ is relevant to the states

Consider the posterior approximation at each assimilation step

$$\widehat{\pi}_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \widehat{\pi}_{\mathbf{X}_r|\mathbf{Y}_s}(\mathbf{x}_r|\mathbf{y}_s)\pi_{\mathbf{X}_\perp|\mathbf{X}_r}(\mathbf{x}_\perp|\mathbf{x}_r)$$

Approach: Find U_r, V_s with small r and s from prior ensemble and observation operator such that π_{X|Y} ≈ π̂_{X|Y} [B, Marzouk et al., 2022]

Main ideas

- Only part of the state $\mathbf{x}_r = U_r^T \mathbf{x}$ is informed by the observations
- Only part of the observation $\mathbf{y}_s = V_s^T \mathbf{y}$ is relevant to the states

Consider the posterior approximation at each assimilation step

$$\widehat{\pi}_{\mathbf{X}|\mathbf{Y}}(\mathbf{x}|\mathbf{y}) = \widehat{\pi}_{\mathbf{X}_r|\mathbf{Y}_s}(\mathbf{x}_r|\mathbf{y}_s)\pi_{\mathbf{X}_\perp|\mathbf{X}_r}(\mathbf{x}_\perp|\mathbf{x}_r)$$

▶ Approach: Find U_r , V_s with small r and s from prior ensemble and observation operator such that $\pi_{X|Y} \approx \hat{\pi}_{X|Y}$ [B, Marzouk et al., 2022]

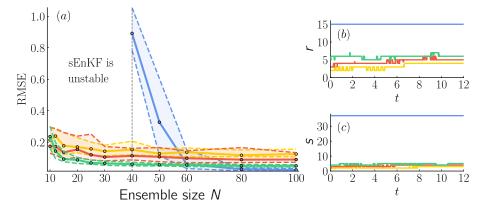
Result: Prior-to-posterior map only acts on low-dimensional variables

$$T_{\mathbf{y}^*}(\mathbf{y}, \mathbf{x}) = U_r T_{\mathbf{y}_s^*}^r (V_s^T \mathbf{y}, U_r^T \mathbf{x}) + U_\perp U_\perp^T \mathbf{x}$$

► *T_r* can be linear [Le Provost, B et al., 2022] or non-linear

Baptista (rsb@caltech.edu)

Low-rank filter is stable for small ensemble sizes



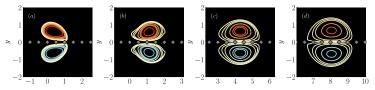
Observations:

- RMSE is stable for small N for different energy ratios
- Adaptive reduced dimensions r, s do not increase over time

Baptista (rsb@caltech.edu)

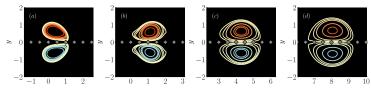
Low-rank EnkF is stable with model error

High-fidelity numerical simulation at Reynolds number 1000

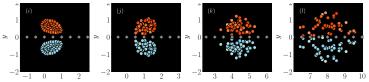


Low-rank EnkF is stable with model error

High-fidelity numerical simulation at Reynolds number 1000

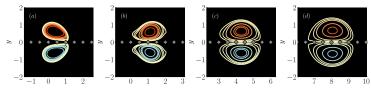


Inviscid vortex model with EnKF

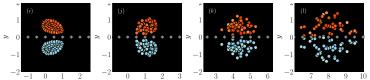


Low-rank EnkF is stable with model error

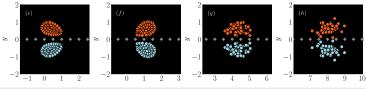
High-fidelity numerical simulation at Reynolds number 1000



Inviscid vortex model with EnKF



Inviscid vortex model with LR-EnKF



Baptista (rsb@caltech.edu)

Conclusions and outlook

Central idea: consistent data assimilation using measure transport

- **Composed transport maps** generalize ensemble filters and smoothers
- Nonlinear maps improve state estimation for chaotic systems
- Exploit (approximate) conditional independence structure for scaling to high-dimensional inference problems

Central idea: consistent data assimilation using measure transport

- **Composed transport maps** generalize ensemble filters and smoothers
- Nonlinear maps improve state estimation for chaotic systems
- Exploit (approximate) conditional independence structure for scaling to high-dimensional inference problems

Ongoing work

- Square-root versions of nonlinear filters and smoothers
- Conditional sampling with other generative models, e.g., score-based diffusion models [Song et al., 2020]

Central idea: consistent data assimilation using measure transport

- **Composed transport maps** generalize ensemble filters and smoothers
- Nonlinear maps improve state estimation for chaotic systems
- Exploit (approximate) conditional independence structure for scaling to high-dimensional inference problems

Ongoing work

- Square-root versions of nonlinear filters and smoothers
- Conditional sampling with other generative models, e.g., score-based diffusion models [Song et al., 2020]

Main references: arXiv:1907.00389, arXiv:2203.05120, arXiv:2210.17000
Thank You
Supported by the U.S. Department of Energy and NSERC

Baptista (rsb@caltech.edu)

References I

- Jeffrey L Anderson. "A non-Gaussian ensemble filter update for data assimilation". In: *Monthly Weather Review* 138.11 (2010), pp. 4186–4198.
- [2] Ricardo Baptista, Youssef Marzouk, and Olivier Zahm.
 "Gradient-based data and parameter dimension reduction for Bayesian models: an information theoretic perspective". In: arXiv preprint arXiv:2207.08670 (2022).
- [3] Ricardo Baptista et al. "Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport". In: *arXiv* preprint arXiv:2206.11343 (2022).
- [4] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. "The frontier of simulation-based inference". In: *Proceedings of the National Academy of Sciences* 117.48 (2020), pp. 30055–30062.

References II

- [5] Nikola Kovachki et al. "Conditional Sampling With Monotone GANs". In: *arXiv:2006.06755* (2020).
- [6] Mathieu Le Provost et al. "A low-rank ensemble Kalman filter for elliptic observations". In: Proceedings of the Royal Society A 478.2266 (2022), p. 20220182.
- Youssef Marzouk et al. "Sampling via measure transport: An introduction". In: *Handbook of Uncertainty Quantification* (2016), pp. 1–41.
- [8] George Papamakarios and Iain Murray. "Fast epsilon-free inference of simulation models with bayesian conditional density estimation". In: arXiv preprint arXiv:1605.06376 (2016).
- [9] Maximilian Ramgraber et al. "Ensemble transport smoothing–Part 1: unified framework". In: *arXiv preprint arXiv:2210.17000* (2022).

- [10] Maximilian Ramgraber et al. "Ensemble transport smoothing–Part 2: nonlinear updates". In: *arXiv preprint arXiv:2210.17435* (2022).
- [11] Yang Song et al. "Score-based generative modeling through stochastic differential equations". In: arXiv preprint arXiv:2011.13456 (2020).
- [12] Alessio Spantini, Ricardo Baptista, and Youssef Marzouk. "Coupling techniques for nonlinear ensemble filtering". In: SIAM Review (2022, In press).
- [13] Alessio Spantini, Daniele Bigoni, and Youssef Marzouk. "Inference via low-dimensional couplings". In: *The Journal of Machine Learning Research* 19.1 (2018), pp. 2639–2709.