
Toward consistent nonlinear filtering and
smoothing via measure transport

Ricardo Baptista1

Joint work with Alessio Spantini2, Youssef Marzouk2,
Max Ramgraber2, Mathieu Le Provost3

1Computing + Mathematical Sciences
California Institute of Technology

2Center for Computational Science and Engineering
Massachusetts Institute of Technology

3Department of Computer Science
Long Island University

EnKF Workshop

May 4, 2023

Baptista (rsb@caltech.edu) Nonlinear ensemble filtering & smoothing 1 / 34

rsb@caltech.edu


Sequential inference is ubiquitous

I Goal: Sequential state estimation in a Bayesian setting
I Applications: Weather prediction, oceanography, finance, population

dynamics, pharmacology, robotics, aerodynamics, etc.

Source: NCAR ensemble wind forecast

Epidemiological forecast
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Non-Gaussianity is ubiquitous

I Non-Gaussianity can include multi-modality and/or tail-heaviness
I Mathieu’s talk (this morning) will address heavy-tailed distributions

Lorenz-63 smoothing ensemble
(X,Y) distribution in additive
manufacturing model [B et al., 2022]

Takeaway: Gaussian approximations under-predict data informativeness
Goal: Develop consistent inference methods for non-Gaussian problems
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Sequential Bayesian inference

State-space models
I States follow model dynamics πXt |Xt−1

I Observations follow likelihood function πYt |Xt

XtXt−1 Xt+1

Yt Yt+1Yt−1

X1X0

Y1

Goal: Recursively sample distributions πXt |y∗1,...,y∗t or πX1:t |y∗1,...,y∗t

Common challenges leading to non-Gaussianity
I Nonlinear dynamical models or observation operators
I Sparse observations in space and time
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Ensemble filtering and smoothing

Approach: Approximate distributions using limited samples

π
t−1|t−1

forecast step analysis step

Bayesian inference

π
t|t−1

π
t|tπXt−1|y∗1,...,y∗t−1 πXt |y∗1,...,y∗t−1 πXt |y∗1,...,y∗t

Ensemble Kalman filters and smoothers
I Analysis step updates particles by estimating a linear transformation
I Inconsistent for capturing Bayesian solution

Goal: Perform analysis consistently and robustly in non-Gaussian settings
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Prior-to-posterior transformations

Idea: Find map T that take samples from prior πX to posterior πX|Y

xi
T (xi)

πX πX|Y =y∗

Plan for this talk:
1 Maps for filtering X = Xt?
2 Maps for smoothing X = X1:t?
3 Leveraging structure in T to tackle high-dimensional problems
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Transport maps characterize distributions

I Transport map S induces a deterministic coupling between a target
density π and a reference density η (e.g., standard normal)
I Generate cheap and independent samples: x ∼ π ⇔ S(x) ∼ η
I Evaluate the target density: π(x) = S]η(x) := η ◦ S(x)| det∇S(x)|

Samples

Pullback Pushforward

Densities
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Monotone triangular maps

As a building block, consider the Knothe-Rosenblatt rearrangement

S(x) =


S1(x1)

S2(x1, x2)
...

Sd(x1, x2, . . . , xd)



1 Unique under mild assumptions on π and η

2 Invertibility is guaranteed by one-dimensional monotonicity ∂kSk > 0

3 S−1(z) and det∇S(x) are simple to evaluate

4 Each component Sk characterizes one marginal conditional

πX = πX1πX2|X1 · · ·πXd |X1,...,Xd−1
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Learning expressive triangular maps from samples

Given target density π and standard Gaussian η,

min
S

DKL(π||S]η)

⇔ min
{s:∂k s>0}

Eπ
[
1
2
s(x1:k)2 − log |∂ks(x1:k)|

]
∀k

Given samples {xi}ni=1 ∼ π, find Ŝk via

arg min
{s:∂k s>0}

1
n

n∑
i=1

[
1
2
s(xi

1:k)2 − log |∂ks(xi
1:k)|

]

Target density approximation: π̂(x) := Ŝ]η(x)
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Triangular maps enable conditional sampling

Consider the triangular map pushing forward πY,X to ηZ1,Z2 :

S(y, x) =

[
SY(y)
SX (y, x)

]
I SY pushes forward πY to ηZ1

I SX (y, ·) pushes forward πX|y to ηZ2 for any y

Recipe for amortized inference:
To characterize posterior πX|y∗ ∝ πy∗|XπX given an observation y∗:
I Simulate from the model: xi ∼ πX, yi ∼ πY|xi

I Estimate SX from joint samples (xi , yi) ∼ πX,Y

I Simulate ŜX (y∗, ·)−1
∣∣∣
zi
∼ πX|y∗ for zi ∼ ηZ2

Related Work: Simulation-based or likelihood-free inference [Papamakarios

& Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019]
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Numerical example: image in-painting [Kovachki, B, et al., 2021]

I Goal: Reconstruct image after removing its center section
I Use map to sample from the conditional distribution for the 14× 14

center pixels of a 28× 28 MNIST handwritten digit
I Estimate conditional mean and variance and classify digit probability

Truth y∗ x|y∗ samples E[x|y∗] V[x|y∗] label|y∗

Note: Prior distributions in imaging problems have no analytic form
Baptista (rsb@caltech.edu) Nonlinear ensemble filtering & smoothing 11 / 34
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Will this always work well?

Lorenz-63 model
I Infer the hidden state given noisy point-wise observations
I With N = 50 samples, we can at best estimate linear maps
I Measure root-mean-squared error (RMSE) of ensemble mean

Takeaway: This approach yields large errors with limited samples
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Another approach: compose maps for sampling

For πY,X and ηZ1,Z2 , consider the triangular map

S(y, x) =

[
SY(y)
SX (y, x)

]
I SX (y, ·) pushes forward πX|y to ηZ2 for any y
I SX (y, x) pushes forward πY,X to ηZ2

πX|Y =y∗

ηZ2

SX (y∗, ·)−1
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Another approach: compose maps for sampling

The prior-to-posterior map that pushes πY,X to πX|y∗ is

Ty∗(y, x) = SX (y∗, ·)−1 ◦ SX (y, x)

Stochastic map algorithm:
1 Estimate SX using (yi , xi) ∼ πY,X

2 Evaluate composed map Ty∗(y, x) to approximately sample posterior
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Stochastic map algorithm for filtering

Forecast step
1 Apply dynamics to generate forecast ensemble (xf

t )i ∼ πXt |xi
t−1

Analysis step
1 Sample observations yi

t ∼ πYt |(xf
t )

i using forecast samples

2 Estimate lower-triangular map S that couples πYt ,Xt and N (0, I)

S(yt , xt) =

[
SY(yt)
SX (yt , xt)

]
3 Compose maps Ty∗t (yt , xt) = SX (y∗t , ·)−1 ◦ SX (yt , xt)

4 Generate analysis ensemble xi
t = Ty∗t (yi

t , xi
t) for i = 1, . . . ,N
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Composed maps are stable for tracking

Lorenz-63 model
I Infer the hidden state given noisy point-wise observations
I With N = 50 samples, we can at best estimate linear maps
I Measure root-mean-squared error (RMSE) of ensemble mean

Takeaway: Composed maps have stable RMSE with limited samples
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Numerical details of the stochastic map algorithm

Generalization of the EnKF
I Restricting SX to be affine in xt , yt , we recover the transformation

Ty∗t (yt , xt) = xt − Σxt ,yt Σ−1yt
(yt − y∗t ),

I Transport maps allow for the gradual introduction of nonlinear terms
I Nonlinear maps Ty∗t capture non-Gaussian structure of πYt ,Xt

Example map parameterization
I Each component is the sum of nonlinear univariate functions

Sk(z1, . . . , zk) = u1(z1) + · · ·+ uk(zk),

where ui(z) = ui ,0z +
∑p

j=1 uij N (z ; ξj , σ
2
j ) and uk(zk) is monotone
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Nonlinear maps capture filtering distribution

Lorenz-63 model
I d = 3 with ∆tobs = 0.1 and fully-observed state
I Observations follow yt = xt + ηt with ηt ∼ N (0, 4I)
I Measure root-mean-squared-error RMSE(t) = ‖x∗t − E[xt |y∗1:t ]‖2/

√
d

I Compare statistics to a particle filter (PF) with 1M samples

Improved posterior estimates is also stable with increasing ∆tobs

Baptista (rsb@caltech.edu) Nonlinear ensemble filtering & smoothing 17 / 34

rsb@caltech.edu


Nonlinear maps improve tracking

Lorenz-96 model: chaotic dynamics
I 40 states, 20 observations, and ∆tobs = 0.4 (large!)
I Measure average RMSE (left) over 2000 assimilation cycles
I Parametrize maps with increasing nonlinearity using RBFs

Nonlinear maps also improve estimates of posterior moments
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Nonlinear maps better capture uncertainty in true state

I Tracking two marginals of Lorenz-96 system at two assimilation times
I Compare ensemble distribution from EnKF and nonlinear maps
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Extension to smoothing

Goal: Characterize full smoothing distribution πX1:T |y1:T or a marginal

I Consider update for all states given a single observation at time T

XTXT−1X2X1

YT

Ensemble Transport Smoother: Apply stochastic map algorithm on joint
states over time:

Ty∗T (yT , x1:T ) = SX (y∗T , ·)−1 ◦ SX (yT , x1:T )

I Ordering of states in SX defines different smoothing algorithms
I Exploiting the Markov structure of the states yields sparse maps
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Transport maps exploit conditional independence

Theorem: Sparsity of triangular maps [Spantini et al., 2018]

Conditional independence of target distribution π (encoded by graph)
defines functional dependence of S such that S]η = π

3

2

5

14

Markov structure of 5-dimensional distribution Sparsity of ∂jSk

1 2 3 4 T

φ µ

Markov structure of hidden Markov model Sparsity of ∂jSk
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Transport maps exploit conditional independence

Theorem: Sparsity of triangular maps [Spantini et al., 2018]

Conditional independence of target distribution π (encoded by graph)
defines functional dependence of S such that S]η = π


S1(x1)
S2(x1, x2)
S3(x1, x2, x3)
S4(x1, x2, x3, x4)


→ π(x1)
→ π(x2|x1)
→ π(x3|x1, x2) = π(x3|x2)
→ π(x4|x1, x2, x3) = π(x4|x3)

X3 ⊥⊥ X1|X2
X4 ⊥⊥ (X1,X2)|X3

x1 x2 x3 x4
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Two new classes of smoothers [Ramgraber, B et al., 2022]

Backwards-in-time: uses the ordering xT , . . . , x1

SX (yT , x1:T )
CI
=


ST (yT , xT )

ST−1(xT , xT−1)
...

S1(x2, x1)

.
(CI) exploits chain structure: x1:T−1 ⊥⊥ yT |xT and x1:s−1 ⊥⊥ xs+1:T |xs

Forwards-in-time: uses the ordering x1, . . . , xT

SX (yT , x1:T )
CI
=


S1(yT , x1)

S2(yT , x1, x2)
...

ST (yT , xT−1, xT )


(CI) exploits chain structure: xs ⊥⊥ x1:s−2|xs−1 for s ≥ 2

I Empirical results suggest backward-in-time accumulates less errors
I Forwards smoother constrains state trajectories by dynamics
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Focusing on backwards smoother

Sequential context: The joint decomposition simplifies

π(x1:T |y∗1:T ) = π(xT |y∗1:T )

T−1∏
s=1

π(xs |xs+1, y∗1:T )

= π(xT |y∗1:T )

T−1∏
s=1

π(xs |xs+1, y∗1:s)

I Component Ss samples π(xs |xs+1, y∗1:s)

I We estimate Ss using filtering ensemble (xi
s , xi

s+1) ∼ π(xs , xs+1|y∗1:s)

Generalization of the Ensemble RTS smoother
I Restricting SX to be affine in yt , x1:t , we recover the transformation

Ty∗T (yT , xT ) = xT − ΣxT ,yT Σ−1yT
(yT − y∗T )

Tx∗s+1
(xs , xs+1) = xs − Σxs ,xs+1Σ−1xs+1

(xs+1 − x∗s+1), s < t
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Special case: fixed-point smoothing

Idea: Apply backwards-in-time smoother to π(xs , xT |y1:T ∗) for s < T

SX (yT , xs , xT )
CI
=

[
ST (yT , xT )

Ss(xT , xs)

]
.

I Estimate map using augmented filtering ensemble π(xs , xt |y∗1:t−1)

I Pushing forward through composed maps samples π(xs , xt |y∗1:t)

Generalization of the ensemble Kalman smoother (EnKS)
For affine Sx , the combined composed map recovers the transformation

x∗s = xs − Σxs ,yt Σ−1yt
(yt − y∗t )

Key feature for affine maps: Update each state variable in parallel

Takeaway: Non-linear transport maps generalize linear smoothers
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Nonlinear smoothers capture bimodal distributions

I Sinusoidal state xt with observation yt = |xt + γ| for γ ∼ N (0, 0.1)
I Infer state using random walk model without knowing true dynamics
I Backward smoother is initialized from nonlinear transport filter
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Nonlinear smoothers improve state estimation

Lorenz-63 model
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Tackling high-dimensional inference problems

So far: Transport maps are consistent for sampling non-Gaussian filtering
and smoothing distributions without requiring importance weights

How do we compute transport maps given small ensemble sizes?
1 Localize estimators with approximate Markov structure
2 Targeted non-linearity using hybrid nonlinear+linear maps
3 Restrict inference to relevant low-dimensional subspaces
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1. Transport maps are easy to “localize" in high dimensions

Many spatial fields satisfy approximate Markov properties

1

2

3

4

5

6

7

8

9

10

Inverse covariance matrix for
Lorenz-96 model forecast is sparse

I Idea: Regularize the estimation of
S by imposing sparsity:

Ŝ(x) =


Ŝ1(x1)

Ŝ2(x1, x2)

Ŝ3( , x2, x3)

Ŝ4( , x3, x4)


I Heuristic: Let Ŝk depend on

neighboring variables (xj)j<k that
are physically close to xk :

Ŝk(x1, . . . , xk) ≈ Ŝk(xN(k), xk)
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2. Structured hybrid linear and nonlinear maps

Local-likelihood models: Scalar observation y ∼ πY |X1

x1

y

T (y , x) =



T1(y , x1)
...

Tl(x1, . . . , xl)
Ll+1(x1, . . . , xl+1)

...
Ld(x1, . . . , xd)



Nonlinear
maps


Affine maps:
EnKF update

Idea: For conditionally Gaussian models, use nonlinear updates Tk for
state variables x1:l and use linear updates Lk for xl+1:d

Special cases:
I l = 1: Nonlinear T1 and keeping all other components affine recovers

the rank histogram filter [Andersen 2010]
I With decay in correlation, Ll+1, . . . ,Ld reverts to an identity map

See Max’s talk (today) on adapting map complexity to ensemble size!
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3. Low-rank updates via an example in turbulent flows

Inference problem:
I States xt : Positions and strengths of point vortices
I Observations yt : Pressure observations along airfoil

Challenges:
I High-dimensional states and observations d = 180 and m = 50
I Observations are non-local: yt is related to all xt by Poisson equation
I Limited ensemble of size N = O(100)
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Low-rank stochastic map filter

Main ideas

I Only part of the state xr = UT
r x is informed by the observations

I Only part of the observation ys = VT
s y is relevant to the states

I Consider the posterior approximation at each assimilation step

π̂X|Y(x|y) = π̂Xr |Ys (xr |ys)πX⊥|Xr (x⊥|xr )

I Approach: Find Ur ,Vs with small r and s from prior ensemble and
observation operator such that πX|Y ≈ π̂X|Y [B, Marzouk et al., 2022]

I Result: Prior-to-posterior map only acts on low-dimensional variables

Ty∗(y, x) = UrT r
y∗s (VT

s y,UT
r x) + U⊥UT

⊥ x

I Tr can be linear [Le Provost, B et al., 2022] or non-linear
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Low-rank filter is stable for small ensemble sizes

Ensemble size N

r
s

Observations:
I RMSE is stable for small N for different energy ratios
I Adaptive reduced dimensions r , s do not increase over time
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Low-rank EnkF is stable with model error

High-fidelity numerical simulation at Reynolds number 1000

Inviscid vortex model with EnKF

Inviscid vortex model with LR-EnKF
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Conclusions and outlook

Central idea: consistent data assimilation using measure transport

I Composed transport maps generalize ensemble filters and smoothers
I Nonlinear maps improve state estimation for chaotic systems
I Exploit (approximate) conditional independence structure for

scaling to high-dimensional inference problems

Ongoing work

I Square-root versions of nonlinear filters and smoothers
I Conditional sampling with other generative models, e.g., score-based

diffusion models [Song et al., 2020]

Main references: arXiv:1907.00389, arXiv:2203.05120, arXiv:2210.17000

Thank You
Supported by the U.S. Department of Energy and NSERC
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