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Sequential inference is ubiquitous

» Goal: Sequential state estimation in a Bayesian setting

» Applications: Weather prediction, oceanography, finance, population
dynamics, pharmacology, robotics, aerodynamics, etc.
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» Goal: Sequential state estimation in a Bayesian setting

» Applications: Weather prediction, oceanography, finance, population
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Non-Gaussianity is ubiquitous

» Non-Gaussianity can include multi-modality and/or tail-heaviness
» Mathieu's talk (this morning) will address heavy-tailed distributions

X

(X,Y) distribution in additive

Lorenz-63 smoothing ensemble manufacturing model [B et al., 2022]
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Non-Gaussianity is ubiquitous

» Non-Gaussianity can include multi-modality and/or tail-heaviness
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Takeaway: Gaussian approximations under-predict data informativeness
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Non-Gaussianity is ubiquitous

» Non-Gaussianity can include multi-modality and/or tail-heaviness
» Mathieu's talk (this morning) will address heavy-tailed distributions
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(X,Y) distribution in additive

Lorenz-63 smoothing ensemble manufacturing model [B et al., 2022]

Takeaway: Gaussian approximations under-predict data informativeness
Goal: Develop consistent inference methods for non-Gaussian problems
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Sequential Bayesian inference

State-space models
> States follow model dynamics 7, x,_,

» Observations follow likelihood function Ty, x,

Y: Yi-1 Y Y1

Goal: Recursively sample distributions TXely?ys OF TXpolyt .yt
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Sequential Bayesian inference

State-space models
> States follow model dynamics 7, x,_,

» Observations follow likelihood function Ty, x,

Y: Yi-1 Y Y1

Goal: Recursively sample distributions TXely?ys OF TXpolyt .yt

Common challenges leading to non-Gaussianity
» Nonlinear dynamical models or observation operators

» Sparse observations in space and time
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Ensemble filtering and smoothing

Approach: Approximate distributions using limited samples
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Bayesian inference
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Bayesian inference

Ensemble Kalman filters and smoothers
» Analysis step updates particles by estimating a linear transformation

» Inconsistent for capturing Bayesian solution
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Ensemble filtering and smoothing

Approach: Approximate distributions using limited samples
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Bayesian inference

Ensemble Kalman filters and smoothers
» Analysis step updates particles by estimating a linear transformation
» Inconsistent for capturing Bayesian solution

Goal: Perform analysis consistently and robustly in non-Gaussian settings
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Prior-to-posterior transformations

Idea: Find map T that take samples from prior 7x to posterior mxy
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Idea: Find map T that take samples from prior 7x to posterior mxy

Plan for this talk:
@ Maps for filtering X = X;?
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Prior-to-posterior transformations

Idea: Find map T that take samples from prior 7x to posterior mxy

Plan for this talk:
@ Maps for filtering X = X;?
© Maps for smoothing X = Xq.+7

© Leveraging structure in T to tackle high-dimensional problems
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Transport maps characterize distributions

» Transport map S induces a deterministic coupling between a target
density 7 and a reference density 1 (e.g., standard normal)
P Generate cheap and independent samples: x ~ T < S(x) ~ 7
> Evaluate the target density: m(x) = Stn(x) == n o S(x)| det VS(x)|

Stn
Pullback

Sy

Pushforward

Samples Densities
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Transport maps characterize distributions

» Transport map S induces a deterministic coupling between a target
density 7 and a reference density 1 (e.g., standard normal)
> Generate cheap and independent samples: z~n < S7(z) ~
> Evaluate the target density: m(x) = Sin(x) == n o S(x)| det VS(x)|

Stn
Pullback

Sy

Pushforward

Samples Densities
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Monotone triangular maps

As a building block, consider the Knothe-Rosenblatt rearrangement
S1(x1)
Sa(x1, x2)

S(x) =

Sa(x1, X2, ..., Xd)
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Monotone triangular maps

As a building block, consider the Knothe-Rosenblatt rearrangement

51 (Xl)
So(x1, x2)

S(x) =

© Unique under mild assumptions on 7 and 7
@ Invertibility is guaranteed by one-dimensional monotonicity 0xSk > 0
© S571(z) and det VS(x) are simple to evaluate

© Each component Sy characterizes one marginal conditional

TX = X TX5 (X1 " X g Xy
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Learning expressive triangular maps from samples

Given target density m and standard Gaussian 7,

-
- -
in D f
min kL(m[|S"n) - R
. 1 5
@{s:g:lsrlo}Ew[is(xm) —Iog|8ks(x1:k)|] Yk - - -
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Learning expressive triangular maps from samples

Given target density m and standard Gaussian 7,

-
- -
in D f
min kL(7]|S"*n) - 4
. 1 5
@{s:g:lsr;O}Est(xl:k) —Iog|8ks(x1:k)|] vk - - -

Given samples {x/ 1, ~m, find Sk via

1 [1 o .
srgmin 3~ 3s(xd4)? ~ loglows(ei)l|
{s:0xs>0} n ; 2 Lk Lk

Target density approximation: 7(x) == §ﬁn(x)
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Triangular maps enable conditional sampling

Consider the triangular map pushing forward my x to mz, z,:

S(y, x) = [SX&)’ x)]

» SY pushes forward my to nz,
> S¥(y,-) pushes forward Tx|y to Mz, for any y
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Triangular maps enable conditional sampling

Consider the triangular map pushing forward my x to mz, z,:

09 =[S

» SY pushes forward my to nz,
> S¥(y,-) pushes forward Tx|y to Mz, for any y

Recipe for amortized inference:
To characterize posterior Ty« o< Ty« xTTx given an observation y*:

» Simulate from the model: x' ~ mx, y' ~ Ty |xi
» Estimate S* from joint samples (x',y') ~ Txy
> Simulate S¥(y*, )" ~ Ty« for z' ~ nz,
Zl
Related Work: Simulation-based or likelihood-free inference [Papamakarios

& Murray, 2016; Lueckmann etal., 2017; Greenberg etal., 2019]
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Numerical example: image in-painting [Kovachki, B, etal., 2021]

» Goal: Reconstruct image after removing its center section

» Use map to sample from the conditional distribution for the 14 x 14
center pixels of a 28 x 28 MNIST handwritten digit

» Estimate conditional mean and variance and classify digit probability

.

Truth y* x|y* samples E[x|y] V[x|yq ID;E;gIT;I*

0

0123456789

™)

zzzzzzzzzz

zzzzzzzzz

Note: Prior distributions in imaging problems have no analytic form
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Will this always work well?

Lorenz-63 model
» Infer the hidden state given noisy point-wise observations
» With N = 50 samples, we can at best estimate linear maps

» Measure root-mean-squared error (RMSE) of ensemble mean

—— Linear Map
— -Observational noise

RMSE
Average RMSE

i
1000 2000 3000 4000 10" 107
Time ¢ Number of training samples n
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Will this always work well?

Lorenz-63 model
» Infer the hidden state given noisy point-wise observations
» With N = 50 samples, we can at best estimate linear maps

» Measure root-mean-squared error (RMSE) of ensemble mean

RMSE
Average RMSE

i !
1000 2000 3000 4000 10! 107
Time ¢ Number of training samples n

Takeaway: This approach yields large errors with limited samples
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Another approach: compose maps for sampling

For my x and 7nz, z,, consider the triangular map

09 =[Sy

> SX(y, -) pushes forward Tx|y to mz, for anyy
» S¥(y,x) pushes forward Ty x to 1z,
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Another approach: compose maps for sampling

For my x and 7z, z,. consider the triangular map

S(y.x) = [Sy(Y) ]

S*(y.x)
> S¥(y,) pushes forward mx, to 1z, for anyy

» S*(y,x) pushes forward my x to 7z,

N
S*(y", ) oS (y, x)

T(y.z)
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Another approach: compose maps for sampling

The prior-to-posterior map that pushes 7y x to Ty« is

Ty (y.x) = S¥(y*, )71 o S¥(y. x)
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Another approach: compose maps for sampling

The prior-to-posterior map that pushes 7y x to Ty« is

Ty (y.x) = S¥(y*, )71 o S¥(y. x)

Stochastic map algorithm:
@ Estimate S* using (y', x') ~ Ty x
@ Evaluate composed map Ty+(y, x) to approximately sample posterior
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Stochastic map algorithm for filtering

Forecast step

© Apply dynamics to generate forecast ensemble (xg)' ~ T

Analysis step
@ Sample observations y} ~ Ty (x0) using forecast samples

@ Estimate lower-triangular map S that couples 7y, x, and A(0, 1)

S(ye xt) = [Sy(Yt) }

SX(Yt. Xt)

@ Compose maps Ty: (¥t x¢) = S*(y;, )"t o S¥(ye, x¢)

@ Generate analysis ensemble x} = Ty (yi,xi)fori=1,.... N
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Composed maps are stable for tracking

Lorenz-63 model
» Infer the hidden state given noisy point-wise observations
» With N = 50 samples, we can at best estimate linear maps

» Measure root-mean-squared error (RMSE) of ensemble mean

RMSE
Average RMSE

i !
1000 2000 3000 4000 10" 107
Time ¢ Number of training samples n

Takeaway: Composed maps have stable RMSE with limited samples
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Composed maps are stable for tracking

Lorenz-63 model
» Infer the hidden state given noisy point-wise observations
» With N = 50 samples, we can at best estimate linear maps

» Measure root-mean-squared error (RMSE) of ensemble mean

12
30 - — —4-Single map
sed
25 — Composed map 10 :*_-ggrs[gs;:iorzla};mise
||=_-Observational noise @ -
20 g s
=
m ~
415 g O
= &
= g
10 =4
<
5 ) O P
Ty 4
0 0

1000 2000 3000 4000 10" 107
Time ¢ Number of training samples n

Takeaway: Composed maps have stable RMSE with limited samples
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Numerical details of the stochastic map algorithm

Generalization of the EnKF

» Restricting S¥ to be affine in x¢, y¢, we recover the transformation

Ty:(ye xt) = Xt — th'ytZ;tl(yt -Yi).

» Transport maps allow for the gradual introduction of nonlinear terms

> Nonlinear maps Ty: capture non-Gaussian structure of Ty, x,
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Numerical details of the stochastic map algorithm

Generalization of the EnKF

» Restricting S¥ to be affine in x¢, y¢, we recover the transformation

Ty:(ye xt) = Xt — th'ytZ;tl(yt -Yi).

» Transport maps allow for the gradual introduction of nonlinear terms

> Nonlinear maps Ty: capture non-Gaussian structure of Ty, x,

Example map parameterization

» Each component is the sum of nonlinear univariate functions
Sk(z1, ..., zk) = ur(z1) + -+ uk(zk),

where u;(z) = ujoz + .7, uj N(z;§;,07) and uk(zx) is monotone
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Nonlinear maps capture filtering distribution

Lorenz-63 model
» d =3 with At,ps = 0.1 and fully-observed state
» Observations follow y; = x¢ + 71, with n; ~ N(0, 41)
> Measure root-mean-squared-error RMSE(t) = ||x} — E[x¢|y.,]ll2/vd
» Compare statistics to a particle filter (PF) with 1M samples

0.8 0.6
. ——EnKF 5 | ——EnKF
I —o—Linear E 0.5% —0—Linear
3 0.6} Linear + 1 RBF © \ Linear + 1 RBF
% —o—Linear + 2 RBF g 0.4 —o—Linear + 2 RBF
S M e PF Std Error ‘5 ------- PF Std Error
g
704 £ 0.3} —
= 3
) 2 0.2
Zo2 i
= g 0.1
< =
= |
0 0
20 60100 200 400 600 20 60100 200 400 600
Ensemble size N Ensemble size N

Improved posterior estimates is also stable with increasing Atyps
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Nonlinear maps improve tracking

Lorenz-96 model: chaotic dynamics
> 40 states, 20 observations, and At,ps = 0.4 (large!)
» Measure average RMSE (/eft) over 2000 assimilation cycles
» Parametrize maps with increasing nonlinearity using RBFs

1.2 .
—A—EnkF

1.1 —0— Linear ]
= Linear + 1 RBF
2T —0—Linear + 2 RBF|]
E - = Var(&)Y?
o 090
Y] Y
[+]
€08
g o.
=

07— Pom - - - - - - -

60100 200 400 600

Ensemble size N

Nonlinear maps also improve estimates of posterior moments
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Nonlinear maps better capture uncertainty in true state

» Tracking two marginals of Lorenz-96 system at two assimilation times

» Compare ensemble distribution from EnKF and nonlinear maps

[ EnKF
[ Linear + 1 RBF

x6(t)

19 / 34
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Nonlinear maps better capture uncertainty in true state

» Tracking two marginals of Lorenz-96 system at two assimilation times

» Compare ensemble distribution from EnKF and nonlinear maps

[ EnKF
[ Linear + 1 RBF

0.5

Time t

Baptista (rsb@caltech.edu) Nonlinear ensemble filtering & smoothing 19 / 34


rsb@caltech.edu

Extension to smoothing

Goal: Characterize full smoothing distribution 7y, .y, . or a marginal

» Consider update for all states given a single observation at time T

@& -—©

Yr

Ensemble Transport Smoother: Apply stochastic map algorithm on joint
states over time:

Ty (y7.x1:7) = S*(yF.-)F o S¥(y7. x1.7)

» Ordering of states in S defines different smoothing algorithms

» Exploiting the Markov structure of the states yields sparse maps
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Transport maps exploit conditional independence

Theorem: Sparsity of triangular maps [Spantini etal., 2018]

Conditional independence of target distribution 7 (encoded by graph)
defines functional dependence of S such that Sin =7

P SR
‘ CI e
O&—060—0 EEE
IR
@) CL.EENE
Markov structure of 5-dimensional distribution Sparsity of ;S

Markov structure of hidden Markov model Sparsity of 9;S,
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Transport maps exploit conditional independence

Theorem: Sparsity of triangular maps [Spantini etal., 2018]

Conditional independence of target distribution 7 (encoded by graph)
defines functional dependence of S such that Sfn =7

Sl(Xl) — 71'(X1)

52(X1,X2) — 71'(X2|X1)

53( , X2, X3) — 7T(X3|X1, X2) = 7T(X3|X2) X3 g X1|X2

Sa( X3, Xa) | = T(xalx1, X2, X3) = T(xa]x3)  Xa 1L (X1, X2)| X3
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Two new classes of smoothers [Ramgraber, B et al., 2022]

Backwards-in-time: uses the ordering x7,...,X3

St(yr.x1)

Sto1(x7,x7-1)
SY(yr.x1.7) g

S1(x2,x1) “
(Cl) exploits chain structure: x1.7—1 1L y7|x7 and X1.s-1 1L Xs11.7|Xs
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Two new classes of smoothers [Ramgraber, B et al., 2022]

Backwards-in-time: uses the ordering x7,...,X3

St(yT.x7)
Sto1(x7,x7-1)
SY(yr x1.7) g

S1(x2,x1) “
(Cl) exploits chain structure: x1.7—1 1L y7|x7 and X1.s-1 1L Xs11.7|Xs

Forwards-in-time: uses the ordering x1, ..., X1

Si(yr.x1)

So(yT.X1,%2)
SY(yr. x1.7) g

P T

ST(YyT.X7-1,XT)
(Cl) exploits chain structure: xs 1l X1.s—2[xs—1 for s > 2
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Two new classes of smoothers [Ramgraber, B et al., 2022]

Backwards-in-time: uses the ordering x7,...,X3

St(yT.x7)
Sto1(x7,x7-1)
SY(yr x1.7) g

S1(x2,x1) “
(Cl) exploits chain structure: x1.7—1 1L y7|x7 and X1.s-1 1L Xs11.7|Xs

Forwards-in-time: uses the ordering x1, ..., X1

Si(yr.x1)

So(yT.X1,%2)
SY(yr. x1.7) g

P T

ST(YyT.X7-1,XT)
(Cl) exploits chain structure: xs 1l X1.s—2[xs—1 for s > 2

» Empirical results suggest backward-in-time accumulates less errors
» Forwards smoother constrains state trajectories by dynamics
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Focusing on backwards smoother

Sequential context: The joint decomposition simplifies

T-1
(X1 7IyL7) = T(XTIyL.7) H T(Xs[Xs41, ¥1.7)

s=
T—

= m(xTlyL.7) (Xs|Xs11,¥7.s)
s=1

—

» Component Sg samples (Xs|Xs+1, ¥7.c)
> We estimate S; using filtering ensemble (x%, XL, 1) ~ T(Xs, Xs11|y7.5)

Generalization of the Ensemble RTS smoother
» Restricting S to be affine in y;, X1.¢, we recover the transformation

Ty (Y1, XT) =XT — Saryr Ty (YT — V)

_ -1 *
T,y (Xs Xs1) = Xs — Ty x4 Ty, (Xs1 — Xo41), s<t
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Special case: fixed-point smoothing

Idea: Apply backwards-in-time smoother to m(xs, X7|y1.7+) for s < T

a |ST(yr.x7)
SY(yT.xs, x7) = [SS(XT'XS) ]

» Estimate map using augmented filtering ensemble m(xs, X¢|y7.;_1)
» Pushing forward through composed maps samples (xs, Xt|y7.;)
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Special case: fixed-point smoothing

Idea: Apply backwards-in-time smoother to m(xs, X7|y1.7+) for s < T

a |ST(yr.x7)
SY(yT.xs, x7) = [SS(XT'XS) ]

» Estimate map using augmented filtering ensemble m(xs, X¢|y7.;_1)
» Pushing forward through composed maps samples (xs, Xt|y7.;)

Generalization of the ensemble Kalman smoother (EnKS)
For affine S*, the combined composed map recovers the transformation

Xg = Xs — zxs,ytzil (yt —vi)
Key feature for affine maps: Update each state variable in parallel

Takeaway: Non-linear transport maps generalize linear smoothers
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Nonlinear smoothers capture bimodal distributions

> Sinusoidal state x; with observation y; = |x; 4+ «y| for v ~ N(0,0.1)
» Infer state using random walk model without knowing true dynamics

» Backward smoother is initialized from nonlinear transport filter

A: Filter

nonlinear ensemble transport filter

state

filtering posterior samples —— truestate  + observations

200 300 400 500

time step

linear ensemble transport smoother

state

smoothing posterior samples  —— truestate  +  observations

nonlinear ensemble transport smoother

state

smoothing posterior samples —— true state observations
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Nonlinear smoothers improve state estimation

Lorenz-63 model

A: Lorenz-63 EnTF and ENTS results

0.6 - filter (order 1) <=+ filter (order 2) filter (order 3) -A: filter (order 5)
: —>— smoother (order 1)  —— smoother (order 2) smoother (order 3)  —— smoother (order 5)

0.54

0.4

0.34

0.2

0.14

time-averaged ensemble mean RMSE

0.0

50 100 175 250 375 500 750 1000
model evaluations

B: Lorenz-63 iENnKS results

(% 0.6 - EnTF (order 5) iEnKS (PertObs)

z —&— ENTS (order 5)  —— IENKS (Sqrt)

g

5054

£

v

o 0.44

£

3

€ 034

@

E]

)

g02

o

H e

z 0.14 L -

£

o0 v T T T T T T v
50 100 175 250 375 500 750 1000
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Tackling high-dimensional inference problems

So far: Transport maps are consistent for sampling non-Gaussian filtering
and smoothing distributions without requiring importance weights
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Tackling high-dimensional inference problems

So far: Transport maps are consistent for sampling non-Gaussian filtering
and smoothing distributions without requiring importance weights

How do we compute transport maps given small ensemble sizes?
@ Localize estimators with approximate Markov structure
© Targeted non-linearity using hybrid nonlinear+linear maps
© Restrict inference to relevant low-dimensional subspaces
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1. Transport maps are easy to “localize" in high dimensions

Many spatial fields satisfy approximate Markov properties

b N W oe 0oo ou ® w0

10 20 30 40

Inverse covariance matrix for
Lorenz-96 model forecast is sparse
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Inverse covariance matrix for
Lorenz-96 model forecast is sparse
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1. Transport maps are easy to “localize" in high dimensions

Many spatial fields satisfy approximate Markov properties

» lIdea: Regularize the estimation of
S by imposing sparsity:

(x1)

(x1, x2)

(. x,x3)
(

,X3,X4)

)y 1) 1) )
w N

~

» Heuristic: Let S¥ depend on
neighboring variables (x;)j<x that
are physically close to x:

0 10 20 30 40

Inverse covariance matrix for
Lorenz-96 model forecast is sparse Sk(xl, XK R Sk(x,\,(k), Xk)
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2. Structured hybrid linear and nonlinear maps

Local-likelihood models: Scalar observation y ~ my |x,

T1(y. x1) ,
) Nonlinear
: maps
_ T/(Xl, s ,X/)
LHl(Xl' T 'Xl+l) Affine maps:
: EnKF update
_Ld(Xl,...,Xd) ]

Idea: For conditionally Gaussian models, use nonlinear updates T, for
state variables x1.; and use linear updates Ly for X;41.4
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2. Structured hybrid linear and nonlinear maps

Local-likelihood models: Scalar observation y ~ my |x,

Ti(y, x1)

_ T/(Xl, s ,X/)
Ligi(xt, ..., Xi41)
Lo, )

Nonlinear
maps

Affine maps:
EnKF update

Idea: For conditionally Gaussian models, use nonlinear updates T, for

state variables x;.; and use linear updates L for
Special cases:

Xi+1:d

» |/ =1: Nonlinear T1 and keeping all other components affine recovers

the rank histogram filter [Andersen 2010]

» With decay in correlation, L;11, ..., Ly reverts to an identity map

See Max's talk (today) on adapting map complexity to ensemble size!
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3. Low-rank updates via an example in turbulent flows

Inference problem:
» States x;: Positions and strengths of point vortices
» Observations y;: Pressure observations along airfoil

Truth from CFD/ experiment

...0 ::/l/. ®e00 ../

Challenges:
» High-dimensional states and observations d = 180 and m = 50
» Observations are non-local: y; is related to all x; by Poisson equation
» Limited ensemble of size N = O(100)

Baptista (rsb@caltech.edu) Nonlinear ensemble filtering & smoothing 30 / 34


rsb@caltech.edu

Low-rank stochastic map filter

Main ideas

» Only part of the state x, = U,Tx is informed by the observations
» Only part of the observation ys = VSTy is relevant to the states
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Low-rank stochastic map filter

Main ideas

» Only part of the state x, = U,Tx is informed by the observations
» Only part of the observation ys = VSTy is relevant to the states

» Consider the posterior approximation at each assimilation step
Txy (XIY) = Tox, v, (X [¥s) T x, (XL [%r)

» Approach: Find U,, Vs with small r and s from prior ensemble and
observation operator such that mxy = %X‘Y [B, Marzouk et al., 2022]
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Low-rank stochastic map filter

Main ideas

» Only part of the state x, = U,Tx is informed by the observations
» Only part of the observation ys = VSTy is relevant to the states

v

Consider the posterior approximation at each assimilation step
Txy (XIY) = Tox, v, (X [¥s) T x, (XL [%r)

» Approach: Find U,, Vs with small r and s from prior ensemble and
observation operator such that mxy = %X‘Y [B, Marzouk et al., 2022]

» Result: Prior-to-posterior map only acts on low-dimensional variables
Ty~ (y' X) = Ur Tyrz(vsTy, UrTX) + U, UIX

» T, can be linear [Le Provost, B et al., 2022] or non-linear
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Low-rank filter is stable for small ensemble sizes

1.0t (a)
0.8
SEnKF is S —
m \
% 0 I 6 8 10 12
-~
x t
10 20 30 40 50 60 ) w % 2 4 6 8 10 12
Ensemble size N t

Observations:
» RMSE is stable for small N for different energy ratios

» Adaptive reduced dimensions r, s do not increase over time
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Low-rank EnkF is stable with model error

High-fidelity numerical simulation at Reynolds number 1000

(b)
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Low-rank EnkF is stable with model err

High-fidelity numerical simulation at Reynolds number 1000

2

Inviscid vortex model with EnKF

0 1 2
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Low-rank EnkF is stable with model erro

High-fidelity numerical simulation at Reynolds number 1000

2

0

1 2
vortex model

0 1 2 3

Inviscid vortex model with LR-EnKF
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Conclusions and outlook
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Conclusions and outlook

Central idea: consistent data assimilation using measure transport

» Composed transport maps generalize ensemble filters and smoothers
» Nonlinear maps improve state estimation for chaotic systems

> Exploit (approximate) conditional independence structure for
scaling to high-dimensional inference problems
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Conclusions and outlook

Central idea: consistent data assimilation using measure transport

» Composed transport maps generalize ensemble filters and smoothers
» Nonlinear maps improve state estimation for chaotic systems

> Exploit (approximate) conditional independence structure for
scaling to high-dimensional inference problems

Ongoing work

» Square-root versions of nonlinear filters and smoothers

» Conditional sampling with other generative models, e.g., score-based
diffusion models [Song et al., 2020]
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Conclusions and outlook

Central idea: consistent data assimilation using measure transport

» Composed transport maps generalize ensemble filters and smoothers
» Nonlinear maps improve state estimation for chaotic systems

> Exploit (approximate) conditional independence structure for
scaling to high-dimensional inference problems

Ongoing work

» Square-root versions of nonlinear filters and smoothers

» Conditional sampling with other generative models, e.g., score-based
diffusion models [Song et al., 2020]

Main references: arXiv:1907.00389, arXiv:2203.05120, arXiv:2210.17000

Thank You
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