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Background and key issues

Interpretation in the Bayesian framework: Gaussian assumptions of
the EnKF, 4DVar methods...

Limits:1

Figure: Estimation of the
three parameters (r,f,g) of an
1D ecosystem model. Time
evolution of the mean and the
mean plus/minus the standard
deviation of the ensemble for
the three estimated
parameters.

Introduction of kernel methods: Data linearisation property

1SB12.
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ETKF formulation and classical resolution I

Assuming the observation operator is linear, the ETKF problem2 reads:

ETKF formulation

argmin
w∈RN

J (w) =
N − 1

2
||w||22 +

1

2
||y −Hx̄f −HXfw||2R−1 (1)

Notations

Observations model: yk = Hxk + ϵk , H ∈ Rn×m and ϵk observations
error, with covariance matrix R

x̄ mean of ensemble states

Xf ∈ Rm×N anomaly matrix of centred states

2HKS07.
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ETKF formulation and classical resolution II

For the sake of later clarity, we introduce some additional notations:

Notations

d̃ = R
−1/2

(y −Hx̄f) ∈ Rp

H̃ = R
−1/2

HXf =


h̃1

⊤

...

h̃p
⊤

 ∈ Rp×N .

ETKF solution (First Order Condition)

w∗ = [(N − 1)I+ H̃⊤H̃]−1H̃⊤d̃ (2)
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ETKF reformulation with kernel methods I

The ETKF problem (1) is equivalent to the extented optimisation problem
in the Reproducing Kernel Hilbert Space (RKHS) Hκ of reproducing kernel
k(x , y) = x⊤y (linear kernel):

Reformulating the ETKF problem

argmin
f ∈Hκ

J̃ (f ) = N − 1

2
||f ||2Hκ

+
1

2

p∑
i=1

(f (h̃i)− d̃i )
2 (3)

with f ∈ Hκ such as: f :

{
Rp → R
x 7→ κ(x,w)
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ETKF reformulation with kernel methods II

Here, we apply the representation theorem and obtain the following
formulation of the ETKF:

Reformulating the ETKF

argmin
α∈Rp+n

˜̃J (α) = N − 1

2
α⊤Kα+

1

2
∥d̃−ΠHKα∥22 (4)

Notations

ΠH =

[
0nn 0np
0pn Ip

]
∈ R(n+p)×(n+p) the projection matrix on the

observation space

K =

[
KX KXH

KXH
⊤ KH

]
∈ R(n+p)×(n+p) with

KX = (κ(afi , a
f
j ))1≤i,j≤n ∈ Rn×n

KHX = (κ(afi , h̃j))1≤i≤n,1≤j≤p ∈ Rn×p

KH = (κ(h̃i, h̃j))1≤i,j≤p ∈ Rp×p

Mauran, Bertino, Mouysset, Simon A kernel extension of the ETKF EnKF Workshop 2023 11 / 40
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ETKF reformulation with kernel methods III

Resolution of (4) (First Order Condition)

α∗ =

[
α∗
X

α∗
H

]
=

[
0n1

[(N − 1)In+p +ΠHK]−1d̃

]
(5)

Thus, the mean of the ensemble after the analysis will be:

Ensemble mean after analysis

x̄a = x̄f +KXH[(N − 1)Ip +KH]
−1d̃ (6)

Mauran, Bertino, Mouysset, Simon A kernel extension of the ETKF EnKF Workshop 2023 12 / 40
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Ensemble’s reconstruction I

Since we work both with observed and unobserved variables, we followed
the strategy implemented in [Eve09] and extended the deterministic
algorithm of the EnKF:

EnKF extented to unobserved variables[
Ea

HEa

]
=

[
x̄f

Hx̄f

]
+

[
Xf

HXf

]
w +
√
N − 1Pa1/2 (7)

with Pa =

[
Pa
X Pa

XH

Pa
XH

⊤ Pa
H

]
∈ R(n+p)×(n+p) the analysis error covariance

matrix.

Mauran, Bertino, Mouysset, Simon A kernel extension of the ETKF EnKF Workshop 2023 14 / 40
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Ensemble’s reconstruction II: Determining Pa
X

Perspective of random variables: α ∼ N (µα,Pα)

Expression of ensemble’s mean: xa = x̄f +ΠXKα

Expression of Pa
X

Pa
X = Cov(xai , x

a
j ) = ΠXKPαKΠX (8)

We can besides approximate3 Pα:

Approximation of Pα

Pα ≈ [∇2 ˜̃J ]−1 (9)

with ˜̃J (α) = N − 1

2
α⊤Kα+

1

2
∥d̃−ΠHKα∥22

3Aur03.
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Experimental setup

L63 model

experiments performed with the DAPPER package
2 sets of experiments:

Comparison between classical ETKF and linear Kernel ETKF:

∀(x, y) ∈ RN × RN , κ(x, y) = x⊤y (10)

Comparison between classical ETKF and non linear Kernel ETKF
(hyperbolic tangent kernel4 with c = 10−4):

∀(x, y) ∈ DN
c × DN

c , κ(x, y) = ϕ(x)⊤ϕ(y) (11)

where DN
c is the Poincaré ball:

DN
c = {z ∈ RN : c ||z || < 1} (12)

and
∀c > 0, ∀z ∈ DN

c , ϕ(z) = tanh−1(
√
c ||z ||) z√

c ||z ||
(13)

For all experiments, RMSE averaged over 10 different seeds
4FHP21.
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Specific setup

We observe only the first two variables

The observations are generated every δto = 0.02

5× 105 observations vectors generated for each experiment with a
burn-in period of 5× 103 × δto

We compare different inflation factors: infl ∈ {1.0, 1.04, 1.1} For each
inflation factor, the evaluated ensemble sizes were
N ∈ {3, 6, 9, 10, 12, 15}.
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Results
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Figure: Average RMSE obtained by ETKF (in green) and linear Kernel ETKF (in blue) assimilation methods when applied
to the Lorenz 63 model and observing only the first two variables. The average is computed upon 10 different seeds generating
observations, initial state... On each subfigure, a different inflation factor is applied to each method:
Left: no inflation (infl = 1.0), Middle: infl = 1.04, Right: infl = 1.1. In each subfigure,
different ensemble sizes N were tested, in each case N ∈ {3, 6, 9, 10, 12, 15}.
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Effect of hyperbolic tangent kernel on L63 I

Figure: Hyperbolic tangent fonction
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Effect of hyperbolic tangent kernel on L63 II
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(b) L63 t anfo med by hype bolic tangent function, 
 c = 10e-4
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(c) L63 t anfo med by hype bolic tangent function, 
 c = 3*10e-4

Phase space evolution

Figure: Phase space evolution of the Lorenz 63 model: (a) classical L63; (b) L63
tranformed by hyperbolic tangent fonction (13) with c = 10−4; (c) L63 tranformed by
hyperbolic tangent fonction (13) with c = 3× 10−4 to accentuate the visual effect
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Effect of hyperbolic tangent kernel on L63 III
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QQ plots of each variable of L63 with of without applying hyperbolic tangent function

Figure: QQ plots of each variable of the L63 relative to the normal distribution, Left: classical L63; Middle: L63 tranformed

by hyperbolic tangent fonction (13) with c = 10−4; Right: L63 tranformed by hyperbolic tangent fonction (13) with

c = 3 × 10−4 to accentuate the visual effect
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Specific setup

2 experiments, one observing all variables, one observing only 2
variables.

Non linearity reinforcement: δto = 0.50 when all variables are
observed; δto = 0.25 in the second experiment.

2× 104 observation vectors and a burn-in period of 2× 102 × δto
when all variables are observed; 5× 104 observation vectors and a
burn-in period of 5× 102 × δto when only 2 variables are observed.

We compare different inflation factors: infl ∈ {1.0, 1.04, 1.1} For each
inflation factor, the evaluated ensemble sizes were
N ∈ {3, 6, 10, 12, 15}.
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Results when all variables are observed
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Figure: Average RMSE obtained by ETKF (in green) and Kernel ETKF applied to hyperbolic tangent kernel with c = 10−4

(in blue) when applied to the Lorenz 63 model and observing all variables. The average is computed upon
10 different seeds generating observations, initial state... Left: infl = 1.0. Middle: infl = 1.04.
Right: infl = 1.1. For each subfigure, different ensemble sizes are tested: N ∈ {3, 6, 10, 12, 15}.
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Results when the 2 first variables are observed I
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Figure: Average RMSE obtained by ETKF (in green) and Kernel ETKF applied to hyperbolic tangent kernel with c = 10−4

(in blue) when applied to the Lorenz 63 model and observing the first two variables. The average
is computed upon 10 different seeds generating observations, initial state... Left: infl = 1.0.
Middle: infl = 1.04. Right: infl = 1.1. In each one, different ensemble sizes are tested:
N ∈ {3, 6, 10, 12, 15}.
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Results when the 2 first variables are observed II

ETKF Kernel ETKF

L63 variable RMSE Spread RMSE Spread

x 1.1 ± 1.0 0.68 ± 0.062 0.69 ± 0.28 0.75 ± 0.057

y 1.4 ± 1.1 0.93 ± 0.082 0.93 ± 0.32 1.0 ± 0.069

z 2.2 ± 1.7 1.4 ± 0.37 1.5 ± 0.82 1.7 ± 0.43

Table: RMSE and Spread of each variables for the hyperbolic tangent Kernel
ETKF and the classical ETKF when applied to the Lorenz 63 model and
observing the first two variables variables in the case where N = 10, infl = 1.04.
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Some validation
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Figure: Ensemble spread (in orange) and RMSE (in blue) obtained by hyperbolic
tangent Kernel ETKF (left panel) and classical ETKF (right panel) assimilation methods
when applied to the Lorenz 63 model and observing the first two variables variables in
the case where N = 10, infl = 1.04. The ensemble spread and RMSE are displayed for
each three variables of the L63 model individually
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Conclusion & Perspectives

Generalisation of the ETKF problem by introducing kernels

Explicit algorithm of the KETKF

Experiments:

Similar performances for the linear kernel ETKF and classical ETKF (as
expected)
Interest of using other kernels in the presence of strong nonlinearties
with the results of the hyberbolic tangent KETKF on small ensemble
sizes

Proceeding paper for MLDADS (ICCS) 2023

Perspectives: Integration of localisation to the KETKF
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KETKF analysis

Algorithm Kernel ETKF analysis

H̃← R−1/2HXf

d̃← R−1/2(y −Hx̄f)
Compute K ▷ depends on the chosen kernel
α∗
H = [(N − 1)Ip +KH]

−1d̃ ▷ Solve a linear system of a SPD matrix

x̄a = x̄f +KXH
⊤
α∗
H

Compute Σ, U the singular values and vectors of Pa
X ▷ refer to

Algorithm 2
Truncate Σ to its rank rΣ and compute its square root: Σ̃1/2

Pa
X
1/2 ← ŨΣ̃

1/2
▷ with Ũ, the first rΣ columns of U

for i = 1... N-rΣ do
rotate Pa1/2

X following the rotation step of Algorithm 3
end for
E = x̄a +

√
N − 1Pa

X
1/2
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Computation of Pa
X

Algorithm Computation of Pa
X

if K is not invertible then

Compute ∇2 ˜̃J ← [(N − 1)K+KΠHΠHK]

Compute the SVD of ∇2 ˜̃J = UJΣJV
⊤
J

Compute ŨJ , Σ̃J and ṼJ
⊤

the respective matrix of UJ ,ΣJ ,VJ
⊤

truncated at the rank of K

Σ← Σ̃−1
J

Compute U← ΠXKŨJ ▷ Pa1/2
X = UΣ1/2

else
Compute Pa

X ← KX −KHXUHdiag(
1

(N−1)+λi
)UH

⊤KHX
⊤ ▷ with

[λi ]1≤i≤n the eigenvalues of KH

Compute the SVD of Pa
X = UΣV⊤

end if
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Rotation step

Algorithm Rotation step of Pa1/2
X , directly derived from Annex A of [FB19]

Require: 1 ≤ i ≤ N − rΣ
ϵ← 1.0
Compute c ← rΣ + i

Compute θ ←
√
c√

c−ϵ

Compute Qϵ ← −θ
c ×



ϵ√
c

. . . . . . . . . . . . ϵ√
c

.

.

. 1 − θ
c

−θ
c

. . . . . . −θ
c

.

.

. −θ
c

1 − θ
c

−θ
c

. . . −θ
c

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.

.

.

.
. . .

. . . 1 − θ
c

−θ
c

ϵ√
c

−θ
c

. . . . . . −θ
c

1 − θ
c


∈ Rc×c

W←
[
0n Pa1/2

X

]
∈ Rn×c

Compute Pa1/2
X ←WQϵ
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