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Overview

= Linear and nonlinear ensemble filters

= Hybrid filter

= Application tests
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Linear and Nonlinear Ensemble Filters
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Linear and Nonlinear Ensemble Filters

- Represent state and its error by ensemble X of N states
/ —
(use ensemble perturbation matrix X = X — X))

* Forecast:
* Integrate ensemble with numerical model

* Analysis step:

- update ensemble mean X =%/ + X'"Tw
« update ensemble perturbations X't = X’fW

(both can be combined in a single step)

«  Ensemble Kalman & nonlinear filters: Different definitions of
- weight vector W (dimension V)

- Transform matrix W (dimension [N X INV) 5
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ETKF (Bishop et al., 2001)

= Ensemble Transform Kalman filter
= Assume Gaussian distributions
= Transform matrix

Al = (N- DI+ HXHTRIHX"

= Mean update weight vector
w = A(HX/)TR™! (y _ fo)

(depends linearly on observation vector y)

= Transformation of ensemble perturbations

W =+VN —1A'2A
A : mean-preserving random matrix or identity

Note: W depends only on R, not observation y
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NETF (Todter & Ahrens, 2015)

= Nonlinear Ensemble Transform Filter

» Mean update from Particle Filter weights:
for Gaussian observation errors for all particles i

@ ~ exp (—0.5(y ~Hx TR (y - Hx{))
(nonlinear function of observations y)

» Ensemble update

= Transform ensemble to fulfill analysis covariance
(like ETKF, but not assuming Gaussianity)

= Derivation gives
. ~ ~ ~ 1/2
W = /N [diag(w) — ww | /2 A
(A mean-preserving random matrix; useful for stability)

NETF is a second-order exact particle filter
Todter, J. and Ahrens, B. (2015) Mon. Wea. Rev. 143,1347-1367 @ lW,



ETKF & NETF

= Analogous update schemes
= Both filters can be localized (LETKF and LNETF)

= But
= ETKF
= very stable, even in nonlinear cases
= Optimal for Gaussian / sub-optimal for nonlinear cases
= NETF
= accounts for nonlinearity (non-Gaussianity)
= higher sampling errors than LETKF
= needs very small localization radii
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Test with Lorenz-96 model

RMSE: LETKF
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Hybrid — LETKF-LNETF

Combine the stability of LETKF with nonlinear features of LNETF
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ETKF-NETF — Hybrid Filter Variants

Factorize the likelihood:  p(y|x) = p(y|x) p(y|x)*

(‘tempering’)
1-step update (HSync)
a ~/
Hoyne = X + (1 =) AXNprF + YAXETKF

- AX: assimilation increment of a filter
* y: hybrid weight (between 0 and 1; 1 for fully ETKF)
2-step updates
Variant 1 (HNK): NETF followed by ETKF
X v = X&prrX/, (1-7)R™]
v = XbrerXbng, YR
« Both steps computed with increased R according to y

Variant 2 (HKN): ETKF followed by NETF .
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Choosing hybrid weight y

= Hybrid weight shifts filter behavior

Some possibilities:
= Fixed value
= Adaptive - According to which condition?

= Frei & Kuensch (2013) suggested

1
using effective sample size N¢fr = Z

(w?)?
= Yo : Choose y so that N.y¢ is as small as possible but
above minimum limit a (done iteratively)

(Usual choice for 'tempering’)

Issue: Using Ve s

= Adaptive alternative Neff = only ensures
Yiin = 1 — N non-collapsing ensemble
(& [

: o , does not ensure good
(close to 1 if Ny small; no iterations) analysis result

“
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Effect of hybrid weight y

= Lorenz-96 model, size 80
= Examine single analysis step

Absolute errors
T

T T T

forecast

1. Run 33 analysis steps with y=1 (LETKF)
2. Run analysis step 34 with one of

a) y=1
b) y=0.8

3. Examine N and analysis errors

Additional experiment:
c) Adjust y at each grid point to get
minimum error

No obvious relation
between Nt and y!
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Account for non-Gaussianity: Skewness and Kurtosis

= Mean — 1st moment
= Variance — 2nd moment

= Skewness — 3rd moment N. N
Nie D im (XZ - X)

N. 9 3/2
[ﬁ 2 i—1 (X —X) ]

=  Kurtosis — 4th moment 1 N, i —\4
N im (X —X)
kurt =

skew =

1 Ne 7) —22_3
[(Te) 2 i—1 (X' = X) }

= Skewness and kurtosis
= generally not bounded
= but limits depend on ensemble size
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Asymptotic properties of skewness and kurtosis

= Bounds of skewness and kurtosis depend on ensemble size
= Assess extreme cases

Case Values skew limit  kurt limit
max.skew xM =a-d xD =3 i=2,...,N, VN Ne
max.kurt xM=a-d, x@ =a+d, xD=a i=3,...,N, 0 —2
min. kurt xD =a—-d, i=1,...No/2; xY) =a+d, j=Ns/2+1,...,N, 0 Ng/2

in

e ; o AW/
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Using skewness and kurtosis to define hybrid weight y

=  Sampling errors are larger in NETF than ETKF
- Always use ETKF for Gaussian (linear) cases
=  Skewness and kurtosis describe deviation from Gaussianity

= mean absolute skewness (7.a.5) and kurtosis (11.ak ) of observed ensemble
(with localization: use locally assimilated observations)

= Use normalized means: _
1 1 standard value:

nmas = —mas nmak = —mak k = N,

VK K

Now define

stronger influence of
nmas and nmak
Vsk,lin = max [min(1 — nmak, 1 —nmas), Yiin] limited by N f 1

Vsk,oo = max [min(1 — nmak, 1 —nmas), ]

Note: There are sampling errors, e.g. for skewness Oskew ™~ 6/Ne
= For N=25: ~10% error in 7y .
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Numerical Experiments
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PDAF - Parallel Data Assimilation Framework fat?ﬁssﬁ?&%'.'ﬁ.'

Framework

A unified tool for interdisciplinary data assimilation ...
= provide support for parallel ensemble forecasts
= provide assimilation methods (solvers) - fully-implemented & parallelized
= provide tools for observation handling and for diagnostics
= easily useable with (probably) any numerical model
= a program library (PDAF-core) plus additional functions
= run from notebooks to supercomputers (Fortran, MPI & OpenMP)

= ensure separation of concerns (model — DA method — observations — covariances)

Open source: [=] 3= [=]

Code also at Code, documentation, and tutorial available at

github.com/PDAF [m

http://pdaf.awi.de

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118 @ NV,



CRPS - Continuous Ranked Probability Score

= Measure deviation of all ensemble members from observation

= No assumption on ensemble distribution

= Example for 5 ensemble states
= CRPS = shaded area
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H. Hersbach, Weather & Forecasting, 15, 559-570, 2000



Assimilation with Lorenz-63 model

Observe full state

Time step size 0.05 TTl- - NETF o]
--—-Hybrid ~ e

sk,lin -,

Vary forecast duration At to vary nonlinearity
Ensemble size N=25

HNK filter variant (nonlinear before Kalman)
Implemented with PDAF

Error of NETF > ETKF due to sampling errors

Effect of hybrid filter grows with nonlinearity of
assimilation problem (forecast length)

Hybrid weight 7Ysk,lin yield smallest errors
without any tuning

mild medium strong

= Errors are reduced up to 28% nonlinearity

Note: Hybrid weight Vsk,« is suboptimal unless optimally tuned
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EKTF & NETF with Lorenz-63 model

Dependence on ensemble size

= NETF yields smaller errors than ETKF if
ensemble size large enough

- Size limit decreases for larger nonlinearity

= Improvement by NETF stronger for higher
nonlinearity

Lorenz-63: CRPS [«
' ' ——NETF
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ensemble size Ne

ETKF and NETF for
3 different nonlinearities

(weak At=0.1, medium At=0.4, strong At=0.7)
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Assimilation with Lorenz-63 model

Hybrid filter HNK
= particular strong effect for small N,

= CRPS from NETF and HNK converge for
large N,

= errors reduced up to 28%
Particle Filter
- comparable CRPS for large N,

*  PF expected to be superior if N,
sufficiently large (the full nonlinear filter)

Note: Easy to use large ensemble for Lorenz-63,
difficult for higher dimensional models

Lorenz-63: CRPS
. . —o—ETKF

L X ——strong nonlin

——NETF
—w—HNK Vek o

* PF
—+-weak nonlin
—+ medium nonlin

5, ST RO —-—-—0—-—-—0—-—-—0—-—-#
- * :

—— o e o - ———— — i e

20 40 60 80 100
ensemble size Ne
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Test with Lorenz-96 model

forgetting factor p

Ensemble size 15; Forecast length: 8 time steps; 20 observations
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Show RMS errors as function

of inflation (forgetting factor
or a) and localization radius

Smallest errors: Hybrid HNK
(10% error reduction)

= hybrid filter able to utlize
non-Gaussian information

Other hybrid variants also
improve the state estimate

hybrid HSync
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Lorenz-96: Influence of y — using skewness and kurtosis
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« When accounting for skewness/kurtosis filter is more stable

« 7Vsk,lin yields smallest (N,=15) or nearly smallest (N,=40) errors
- smallest errors with "Vsk,c for optimal tuning
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Lorenz-96: Influence of y — cases y, and y;;, (account only for N )

CRPS relative to LETKF
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« Stronger effect of hybrid filter for N,.=40
*  Yiin Yields optimal (N=15) or nearly optimal (N=40) errors

* Yo requires tuning; increased errors for small @« compared to 7Vsk
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Application example PDAF e

Framework

Ocean-biogeochemical model:
Chlorophyll: CMEMS

NEMO-ERGOM
= NEMO + ERGOM

b4
y ) N oot
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Configuration: NORDIC 2.0

= 1.8km resolution, 56 layers, 90s time step oo Rl I°E
= North Sea & Baltic Sea - 3
= Qperational use in CMEMS for the Baltic Sea -

DA implementation . - |
= augment NEMO-ERGOM with DA functionality by PDAF RS Wi S
(online-coupling in memory)

= State vector:

0

= physics + biogeochemistry ocean.and biogeo_chemical

State vector size ~153 million dynamics are nonlinear and

= Assimilate satellite chlorophyll data distributions non-Gaussian
This project has received funding from the European Union’s Horizon 2020 =

research and innovation programme under grant agreement No 776480 @ NV,



Application in the North Sea & Baltic Sea PDAFeei

Framework

A) Free A) Free

10"

= Plots: depth-profile of
chlorophyll over time

= CaseYsk,o With Ngg> 0.4

March April May March April May
0 B) LESTKF Forecast 0 B) Hybrid Forecast
. " LKNETF can be applied
£
10° § = Small differences between
g LESTKF and LKNETF
March April May March April May = Not clear yet if LKNETF is
better
0 (©) LESTKF Analysis 0 (©) Hybrid Analysis
~10 ~10
£ £
<20 =20
® 30 ® 30
a o
40 40

-1
March April May March April May 10 @ M ,



Summary

Introduced hybrid nonlinear-Kalman ensemble transform filter
= Combine LETKF and LNETF methods
= hybrid weight y shifts filter behavior
= Cost of analysis step ~2x LETKF

Experiments with Lorenz models

= Hybrid filter successfully reduces errors compared to LETKF and LNETF
= Best results for variant HNK: LNETF applied before LETKF
= Can compute y from skewness and kurtosis

= allows to control nonlinearity of filter based on non-Gaussianity
= Improved stability & reduced errors compared to tempering rule on N4

Nerger, Q. J. Meteorol. Soc., 148 (2022) 620-640, doi:10.1002/qj.4221
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Data Assimilation
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Next steps

Need to PDAFParaIIeI

_ . Data Assimilation
= improve understanding of effect of ¥ Framework

= mathematical basis
= Are skewness & kurtosis good choices?
= s linear dependence of skewness & kurtosis right?

= asses for which nonlinear cases hybrid filter is superior
= only 3% lower errors in test with ocean physics at 0.25° resolution

Nerger, Q. J. Meteorol. Soc., 148 (2022) 620-640, doi:10.1002/qj.4221




