#### An ensemble filter for heavy-tailed *t*-distributions

Mathieu Le Provost<sup>1</sup>, Ricardo Baptista<sup>2</sup>, Youssef Marzouk<sup>3</sup> and Jeff D. Eldredge<sup>4</sup>

<sup>1</sup>Long Island University, <sup>2</sup>California Institute of Technology, <sup>3</sup>Massachusetts Institute of Technology, <sup>4</sup>University of California, Los Angeles

> 18th EnKF workshop May 4, 2023

# LIU Caltech I'lii UCLA

Le Provost, Baptista, Marzouk and Eldredge

#### Motivations

**Departure from Gaussian tails** is a common feature of geophysical inference problems due to the nonlinear dynamical and observation processes and the uncertainty from the physical sensors.

Many filters like the EnKF assume **at least** that the **tails of the forecast distribution are Gaussian** and not suited for heavy-tailed distributions.

**Objective:** How can do consistent inference in heavy-tailed filtering problems?

#### Problem setting

We consider a generic state-space model:

The evolution of the state  $(\mathbf{X}_t)_{t\geq 0}$  is fully described by the initial distribution  $\pi_{\mathbf{X}_0}$  and the dynamical model:

 $\mathbf{X}_t = \boldsymbol{f}(\mathbf{X}_{t-1}) + \mathbf{W}_t$ 

We collect observations  $(\mathbf{Y}_t)_{t>0}$  at every time step according to the observation model:

$$\mathbf{Y}_t = \boldsymbol{h}(\mathbf{X}_t) + \boldsymbol{\mathcal{E}}_t$$

**Objective:** Sequentially estimate the filtering density  $\pi_{t \mid t} := \pi_{\mathbf{X}_t \mid \mathbf{Y}_{1:t} = \mathbf{y}_{1:t}}$ 

#### Generic ensemble filtering algorithm

Ensemble filtering methods propagate a set of M particles  $\{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(M)}\}$  to form an empirical approximation for the filtering density  $\pi_{t|t}$ .

- 1. Forecast step: Filtering dist. at time  $t 1 \pi_{t-1 \mid t-1} \rightarrow$  Forecast dist.  $\pi_{t \mid t-1}$ We obtain samples  $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)}\} \sim \pi_{t \mid t-1}$
- 2. Analysis step: Forecast dist.  $\pi_{t \mid t-1} \rightarrow$  Filtering dist. at time  $t \pi_{t \mid t}$ We obtain samples  $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)}\} \sim \pi_{t \mid t}$

Ensemble filtering algorithms share the same forecast step but differ in the analysis step.

A "transformative" view of the analysis step



Analysis step: application of the **analysis map** T: Prior  $\pi_{t|t-1} \rightarrow$  Posterior  $\pi_{t|t}$ 

The analysis map of the Kalman filter  $T_{KF}$ :

$$\mathcal{T}_{KF}(\mathbf{y}, \mathbf{x}) = \mathbf{x} - \mathbf{\Sigma}_{\mathbf{X}, \mathbf{Y}} \mathbf{\Sigma}_{\mathbf{Y}}^{-1}(\mathbf{y} - \mathbf{y}^{\star}) = \mathbf{x} - \mathcal{K}(\mathbf{y} - \mathbf{y}^{\star})$$

The ensemble Kalman filter (EnKF) [Evensen, 1994] constructs an estimate  $\hat{K} \in \mathbb{R}^{n \times d}$  from limited samples  $\{x^1, \ldots, x^M\}$  of the forecast distribution.

#### Transport map between two probability measures

- Seek a transport map  $\boldsymbol{S}$  that pushes forward  $\pi$  to  $\eta$ , i.e.  $\boldsymbol{S}_{\sharp}\pi = \eta$ .
- Generate cheap and independent samples  $\mathbf{x} \sim \pi \Rightarrow \mathbf{S}(\mathbf{x}) \sim \eta$ .



Le Provost, Baptista, Marzouk and Eldredge

#### Looking for a good map [Marzouk et al., 2016]

Consider the Knothe-Rosenblatt (KR) rearrangement S s.t.  $S_{\sharp}\pi = \eta$ 

$$\boldsymbol{S}(\boldsymbol{z}) = \boldsymbol{S}(z_1, z_2, \cdots, z_m) = \begin{bmatrix} S^1(z_1) \\ S^2(z_1, z_2) \\ \vdots \\ S^m(z_1, z_2, \cdots, z_m) \end{bmatrix}$$

- The KR has many nice features for Bayesian inference, e.g. easily invertible and det ∇S(x) is simple to evaluate [Marzouk et al., 2016, Baptista et al., 2020].
- The 1D map  $\xi \mapsto S^k(x_1, x_2, \dots, x_{k-1}, \xi)$  characterizes the marginal conditional  $\pi_{X_k \mid \mathbf{x}_{1:k-1} = \mathbf{x}_{1:k-1}}(\xi)$ .

#### Gaussian case

Consider  $\mathbf{X} \sim \pi_{\mathbf{X}} = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$  and let  $\boldsymbol{L}\boldsymbol{L}^{\top} = \boldsymbol{\Sigma}^{-1}$  be the Cholesky factorization of  $\boldsymbol{\Sigma}^{-1}$ . Then  $\boldsymbol{S}(\boldsymbol{x}) = \boldsymbol{L}(\boldsymbol{x} - \boldsymbol{\mu})$  is the KR that pushes forward  $\pi_{\mathbf{X}}$  to  $\eta = \mathcal{N}(\mathbf{0}_n, \boldsymbol{I}_n)$ .



Consider the KR rearrangement **S** s.t.  $S_{\sharp}\pi_{\mathbf{Y},\mathbf{X}} = \eta$ 

$$oldsymbol{S}(oldsymbol{y},oldsymbol{x}) = \left[egin{array}{c} oldsymbol{S}^{oldsymbol{\mathcal{V}}}(oldsymbol{y})\ oldsymbol{S}^{oldsymbol{\mathcal{X}}}(oldsymbol{y},oldsymbol{x}) \end{array}
ight],$$



Consider the KR rearrangement  $\boldsymbol{S}$  s.t.  $\boldsymbol{S}_{\sharp} \pi_{\mathbf{Y},\mathbf{X}} = \eta$ 

$$m{S}(m{y},m{x}) = \left[egin{array}{c} m{S}^{m{\mathcal{V}}}(m{y}) \ m{S}^{m{\mathcal{X}}}(m{y},m{x}) \end{array}
ight],$$

• The map  $\boldsymbol{\xi} \mapsto \boldsymbol{S}^{\boldsymbol{\mathcal{X}}}(\boldsymbol{y}^{\star}, \boldsymbol{\xi})$  pushes forward  $\pi_{\boldsymbol{X} \mid \boldsymbol{Y}}(\cdot \mid \boldsymbol{y}^{\star})$  to  $\eta$ 



Le Provost, Baptista, Marzouk and Eldredge

Consider the KR rearrangement  $\boldsymbol{S}$  s.t.  $\boldsymbol{S}_{\sharp} \pi_{\mathbf{Y},\mathbf{X}} = \eta$ 

$$m{S}(m{y},m{x}) = \left[egin{array}{c} m{S}^{m{\mathcal{V}}}(m{y}) \ m{S}^{m{\mathcal{X}}}(m{y},m{x}) \end{array}
ight],$$

• The map  $\pmb{\xi} \mapsto \pmb{S}^{\mathcal{X}}(\pmb{y}^{\star},\pmb{\xi})$  pushes forward  $\pi_{\pmb{X}\mid\pmb{Y}}(\cdot\mid\pmb{y}^{\star})$  to  $\eta$ 



Le Provost, Baptista, Marzouk and Eldredge

Consider the KR rearrangement  $\boldsymbol{S}$  s.t.  $\boldsymbol{S}_{\sharp} \pi_{\mathbf{Y},\mathbf{X}} = \eta$ 

$$m{S}(m{y},m{x}) = \left[egin{array}{c} m{S}^{m{\mathcal{V}}}(m{y}) \ m{S}^{m{\mathcal{X}}}(m{y},m{x}) \end{array}
ight],$$

• The map  $\boldsymbol{\xi} \mapsto \boldsymbol{S}^{\boldsymbol{\mathcal{X}}}(\boldsymbol{y}^{\star}, \boldsymbol{\xi})$  pushes forward  $\pi_{\boldsymbol{X} \mid \boldsymbol{Y}}(\cdot \mid \boldsymbol{y}^{\star})$  to  $\eta$ 



Le Provost, Baptista, Marzouk and Eldredge

Derivation of the analysis map of the Kalman filter [Spantini et al., 2022]

$$m{T}(m{y},m{x}) = m{S}^{m{\mathcal{X}}}(m{y}^{\star},\cdot)^{-1} \circ m{S}^{m{\mathcal{X}}}(m{y},m{x})$$

We recover the analysis map of the Kalman filter when

1.  $\boldsymbol{S}^{\boldsymbol{\chi}}$  is linear

2. The reference density is the standard normal distribution  $\eta = \mathcal{N}(\mathbf{0}_{d+n}, \mathbf{I}_{d+n})$ 

Ensemble filters differ in the choice of

- the reference density
- the class of functions to represent  $\boldsymbol{S}^{\boldsymbol{\chi}}$
- the estimation of  $\boldsymbol{S}^{\boldsymbol{\mathcal{X}}}$  from samples

### Limitations of light-tailed filter for heavy-tailed distributions

Many ensemble filters like the EnKF assume at least that the tails of the forecast distribution are Gaussian.

These filters don't provide consistent inference for heavy-tailed filtering problems.

Our contribution: Introduce a new ensemble filter called **ensemble robust filter (EnRF)** based on the following assumptions:

- We restrict  $\boldsymbol{S}^{\boldsymbol{\mathcal{X}}}$  to be linear
- We choose a reference distribution whose tail-heaviness can be adapted to the data.

#### *t*-distributions

*t*-distributions are a family of distributions parameterized by a mean  $\mu_{\mathbf{X}} \in \mathbb{R}^{n}$ , a scale matrix  $C_{\mathbf{X}} \in \mathbb{R}^{n \times n}$ , and a degree of freedom  $\nu_{\mathbf{X}} \in [1, \infty[$ .

The degree of freedom  $\nu_{\mathbf{X}}$  characterizes the tail-heaviness:

- For  $\nu_{\mathbf{X}} = 1$ , we recover the Cauchy distribution
- For  $\nu_{\mathbf{X}} = \infty$ , we recover the Gaussian distribution

Relation between the parameters and the moments of a *t*-distribution:

$$\begin{split} & \mathrm{E}_{\pi_{\mathbf{X}}}\left[\mathbf{x}\right] = \boldsymbol{\mu}_{\mathbf{X}}, \text{ for } \nu_{\mathbf{X}} > 1 \\ & \mathrm{E}_{\pi_{\mathbf{X}}}\left[(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})^{\top}\right] = \frac{\nu_{\mathbf{X}}}{\nu_{\mathbf{X}} - 2} \boldsymbol{C}_{\mathbf{X}} \text{ for } \nu_{\mathbf{X}} > 2 \end{split}$$

## Probability density function of *t*-distributions



PDF of the univariate standard *t*-distribution  $St(0, 1, \nu)$  for  $\nu = 2, 5, 10, 20, 100$  and the univariate standard Gaussian distribution  $\mathcal{N}(0, 1) = St(0, 1, \infty)$  (black).

#### Quantiles of the *t*-distributions



Evolution of  $\alpha$ -quantile  $q_{\alpha}$  for  $\alpha = 1\%, 2\%, 5\%, 10\%$  with the degree of freedom  $\nu$  of the univariate standard *t*-distribution. Dashed lines corresponds to the  $\alpha$ -quantiles for the standard Gaussian distribution  $\mathcal{N}(0, 1) = St(0, 1, \infty)$ .

Le Provost, Baptista, Marzouk and Eldredge

13/28

#### Useful properties of *t*-distributions:

1. *t*-distributions are closed under affine transformations:

If 
$$\mathbf{X} \sim St(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{C}_{\mathbf{X}}, \boldsymbol{\nu}_{\mathbf{X}})$$
, then  $\mathbf{Z} = \mathbf{A}\mathbf{X} + \mathbf{b} \sim St\left(\mathbf{A}\boldsymbol{\mu}_{\mathbf{X}} + \mathbf{b}, \mathbf{A}\mathbf{C}_{\mathbf{X}}\mathbf{A}^{\top}, \boldsymbol{\nu}_{\mathbf{X}}\right)$ 

2. Conditional and marginal distributions are known in closed form.

Consider 
$$\begin{bmatrix} \mathbf{Y} \\ \mathbf{X} \end{bmatrix} \sim St \left( \begin{bmatrix} \boldsymbol{\mu}_{\mathbf{X}} \\ \boldsymbol{\mu}_{\mathbf{Y}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{C}_{\mathbf{Y}} & \boldsymbol{C}_{\mathbf{X},\mathbf{Y}}^{\top} \\ \boldsymbol{C}_{\mathbf{X},\mathbf{Y}} & \boldsymbol{C}_{\mathbf{X}} \end{bmatrix}, \nu \right)$$

Marginal: 
$$\mathbf{X} \sim St(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{C}_{\mathbf{X}}, \nu_{\mathbf{X}})$$
  
Conditional:  $\pi_{\mathbf{X} | \mathbf{Y}=\mathbf{y}} \sim St(\boldsymbol{\mu}_{\mathbf{X} | \mathbf{Y}=\mathbf{y}}, \boldsymbol{C}_{\mathbf{X} | \mathbf{Y}=\mathbf{y}}, \nu_{\mathbf{X} | \mathbf{Y}=\mathbf{y}})$  with  
 $\boldsymbol{\mu}_{\mathbf{X} | \mathbf{y}} = \boldsymbol{\mu}_{\mathbf{X}} + \boldsymbol{C}_{\mathbf{X},\mathbf{Y}} \boldsymbol{C}_{\mathbf{Y}}^{-1} (\mathbf{y} - \boldsymbol{\mu}_{\mathbf{Y}})$   
 $\boldsymbol{C}_{\mathbf{X} | \mathbf{Y}=\mathbf{y}} = \underbrace{\frac{\nu + (\mathbf{y} - \boldsymbol{\mu}_{\mathbf{Y}})^{\top} \boldsymbol{C}_{\mathbf{Y}}^{-1} (\mathbf{y} - \boldsymbol{\mu}_{\mathbf{Y}})}{\nu + d}}_{\alpha_{\mathbf{Y}}(\mathbf{y}) > 0} \underbrace{\left( \underbrace{\boldsymbol{C}_{\mathbf{X}} - \boldsymbol{C}_{\mathbf{X},\mathbf{Y}} \boldsymbol{C}_{\mathbf{Y}}^{-1} \boldsymbol{C}_{\mathbf{X},\mathbf{Y}}^{\top}}_{\text{Schur complement } \boldsymbol{C}_{\mathbf{X}\setminus\mathbf{Y}}} \right)}_{\text{Schur complement } \boldsymbol{C}_{\mathbf{X}\setminus\mathbf{Y}}}$ 

Le Provost, Baptista, Marzouk and Eldredge

#### Analysis map $T_{\nu}$ for *t*-distributions

Let  $S_{\nu}$  the KR that pushes forward the joint *t*-distribution  $\pi_{\mathbf{Y},\mathbf{X}}$  with dof  $\nu$  to a "judicious" *t*-distribution  $\eta_{\nu}$  with same dof, i.e.  $S_{\nu \sharp} \pi_{\mathbf{Y},\mathbf{X}} = \eta_{\nu}$ .

**Key:**  $S_{\nu}$  can be computed in closed form (new result).

We obtain the analysis map  $\boldsymbol{T}_{\nu}: \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}^n$  by partial inversion of  $\boldsymbol{S}_{\nu}^{\boldsymbol{\mathcal{X}}}$ :

$$\begin{aligned} \boldsymbol{\mathcal{T}}_{\nu}(\boldsymbol{y},\boldsymbol{x}) &= \boldsymbol{\mathcal{S}}_{\nu}^{\boldsymbol{\mathcal{X}}}(\boldsymbol{y}^{\star},\cdot)^{-1} \circ \boldsymbol{\mathcal{S}}_{\nu}^{\boldsymbol{\mathcal{X}}}(\boldsymbol{y},\boldsymbol{x}) \\ &= \boldsymbol{\mu}_{\boldsymbol{X}} + \boldsymbol{\mathcal{C}}_{\boldsymbol{X},\boldsymbol{Y}}\boldsymbol{\mathcal{C}}_{\boldsymbol{Y}}^{-1}(\boldsymbol{y}^{\star} - \boldsymbol{\mu}_{\boldsymbol{Y}}) + \sqrt{\frac{\alpha_{\boldsymbol{Y}}(\boldsymbol{y}^{\star})}{\alpha_{\boldsymbol{Y}}(\boldsymbol{y})}} \left[ (\boldsymbol{x} - \boldsymbol{\mu}_{\boldsymbol{X}}) - \boldsymbol{\mathcal{C}}_{\boldsymbol{X},\boldsymbol{Y}}\boldsymbol{\mathcal{C}}_{\boldsymbol{Y}}^{-1}(\boldsymbol{y} - \boldsymbol{\mu}_{\boldsymbol{Y}}) \right] \end{aligned}$$

Note that  $\boldsymbol{C}_{\boldsymbol{X},\boldsymbol{Y}}\boldsymbol{C}_{\boldsymbol{Y}}^{-1} = \boldsymbol{\Sigma}_{\boldsymbol{X},\boldsymbol{Y}}\boldsymbol{\Sigma}_{\boldsymbol{Y}}^{-1}.$ 

Le Provost, Baptista, Marzouk and Eldredge

15/28

#### Connection with the Kalman filter

Let's perform an asymptotic expansion of  $\boldsymbol{T}_{\nu}$  for large  $\nu$ :

$$m{T}_{
u} = \underbrace{m{T}_{\infty}}_{m{T}_{m{KF}}} + ext{higher order terms in } O\left(rac{1}{
u}
ight)$$

- The zeroth order term  ${m T}_\infty$  is exactly the analysis map of the Kalman filter  ${m T}_{
  m KF}.$
- The higher order terms correct the analysis map  $\boldsymbol{T}_{\mathsf{KF}}$  to account for the finite degree of freedom.

#### Takeaway

The analysis map  $T_{\nu}$  generalizes the analysis map of the Kalman filter for *t*-distributions with finite degree of freedom!

Le Provost, Baptista, Marzouk and Eldredge

#### Sensitivity to outlying synthetic observations

**Context:** Observation models often rely on simplified physics and suffer from mis-specifications of the observation operator and observation noise.

Let  $(\mathbf{y}^{(j)}, \mathbf{x}^{(j)})$  be a joint forecast sample with an outlying synthetic observation  $\mathbf{y}^{(j)}$  generated by the likelihood model  $\pi_{\mathbf{Y} \mid \mathbf{X} = \mathbf{x}^{(j)}}$ , such that  $\delta_{\mathbf{Y}}(\mathbf{y}^{(j)}) = (\mathbf{y}^{(j)} - \boldsymbol{\mu}_{\mathbf{Y}})^{\top} \mathbf{C}_{\mathbf{Y}}^{-1} (\mathbf{y}^{(j)} - \boldsymbol{\mu}_{\mathbf{Y}}) \to \infty$ . Then, the analysis map  $\mathbf{T}_{\nu}$  reduces to

$$\boldsymbol{T}_{\nu}(\boldsymbol{y}, \boldsymbol{x}) = \boldsymbol{\mu}_{\boldsymbol{X}} + \boldsymbol{C}_{\boldsymbol{X}, \boldsymbol{Y}} \boldsymbol{C}_{\boldsymbol{Y}}^{-1}(\boldsymbol{y}^{\star} - \boldsymbol{\mu}_{\boldsymbol{Y}}).$$

#### Takeaways:

- The outlying observation  $\mathbf{y}^{(j)}$  vanishes from the analysis map.
- The prior sample  $\mathbf{x}^{(j)}$  is mapped to the posterior mean/median/mode.

#### What is the pushforward of $\pi_{\mathbf{X}}$ by the maps $\mathbf{T}_{\nu}$ and $\mathbf{T}_{\mathsf{KF}}$ ?

$$\begin{aligned} \boldsymbol{T}_{\nu} \text{ leads to exact inference: } \boldsymbol{T}_{\nu_{\sharp}\pi_{\mathbf{X}}} &= \pi_{\mathbf{X} \mid \mathbf{y}^{\star}} = St \left( \boldsymbol{\mu}_{\mathbf{X} \mid \mathbf{y}^{\star}}, \boldsymbol{C}_{\mathbf{X} \mid \mathbf{y}^{\star}}, \boldsymbol{\nu}_{\mathbf{X} \mid \mathbf{y}^{\star}} \right) : \\ \boldsymbol{\mu}_{\mathbf{X} \mid \mathbf{y}^{\star}} &= \boldsymbol{\mu}_{\mathbf{X}} + \boldsymbol{C}_{\mathbf{X},\mathbf{Y}} \boldsymbol{C}_{\mathbf{Y}}^{-1} (\mathbf{y}^{\star} - \boldsymbol{\mu}_{\mathbf{Y}}), \\ \boldsymbol{C}_{\mathbf{X} \mid \mathbf{y}^{\star}} &= \alpha_{\mathbf{Y}} (\mathbf{y}^{\star}) \boldsymbol{C}_{\mathbf{X} \setminus \mathbf{Y}}, \\ \boldsymbol{\nu}_{\mathbf{X} \mid \mathbf{y}^{\star}} &= \nu + d, \end{aligned}$$
(1)

We interpret  $\alpha_{\mathbf{Y}}(\mathbf{y}^{\star})$  as an **adaptive** and **data-dependent** multiplicative inflation.

$$\boldsymbol{T}_{\mathrm{KF}\sharp} \boldsymbol{\pi}_{\mathbf{X}} = St \left( \boldsymbol{\mu}_{\boldsymbol{T}_{\mathrm{KF}\sharp}\boldsymbol{\pi}_{\mathbf{X}}}, \boldsymbol{C}_{\boldsymbol{T}_{\mathrm{KF}\sharp}\boldsymbol{\pi}_{\mathbf{X}}}, \boldsymbol{\nu}_{\boldsymbol{T}_{\mathrm{KF}\sharp}\boldsymbol{\pi}_{\mathbf{X}}} \right) \text{ with}$$
$$\boldsymbol{\mu}_{\boldsymbol{T}_{\mathrm{KF}\sharp}\boldsymbol{\pi}_{\mathbf{X}}} = \boldsymbol{\mu}_{\mathbf{X}} + \boldsymbol{C}_{\mathbf{X},\mathbf{Y}} \boldsymbol{C}_{\mathbf{Y}}^{-1} (\boldsymbol{y}^{\star} - \boldsymbol{\mu}_{\mathbf{Y}}),$$
$$\boldsymbol{C}_{\boldsymbol{T}_{\mathrm{KF}\sharp}\boldsymbol{\pi}_{\mathbf{X}}} = 1 \times \boldsymbol{C}_{\mathbf{X} \setminus \mathbf{Y}},$$
$$\boldsymbol{\nu}_{\boldsymbol{T}_{\mathrm{KF}\sharp}\boldsymbol{\pi}_{\mathbf{X}}} = \boldsymbol{\nu} + \mathbf{0}.$$
(2)

The Kalman filter is only consistent to estimate the mean value of *t*-distributions.

Le Provost, Baptista, Marzouk and Eldredge

## Challenges of estimating heavy-tailed distributions from samples

The classical sample mean and covariance estimators are derived from a maximum likelihood approach for Gaussian distributions.

These light-tailed estimators are very sensitive to outliers and introduce additional variance.

We use a "regularized" expectation-maximization algorithm (EMq) to estimate the heavy-tailed joint forecast distribution  $\pi_{\mathbf{Y},\mathbf{X}}$  from  $\{(\mathbf{y}^{(i)}, \mathbf{x}^{(i)})\}$  [Doğru et al., 2018].

We call **ensemble robust filter (EnRF)** the ensemble filter that estimates  $T_{\nu}$  with the EMq from the joint forecast samples  $\{(y^{(i)}, x^{(i)})\}$ .

#### Empirical performance of light-tailed and heavy-tailed estimators

$$\text{Consider } \begin{bmatrix} \mathbf{Y} \\ \mathbf{X} \end{bmatrix} \sim St \left( \begin{bmatrix} \boldsymbol{\mu}_{\mathbf{X}} \\ \boldsymbol{\mu}_{\mathbf{Y}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{C}_{\mathbf{Y}} & \boldsymbol{C}_{\mathbf{X},\mathbf{Y}}^{\top} \\ \boldsymbol{C}_{\mathbf{X},\mathbf{Y}} & \boldsymbol{C}_{\mathbf{X}} \end{bmatrix}, \nu \right) \text{ with } \nu = 2.1, \ \mathbf{X} \in \mathbb{R}^{10} \text{ and } \mathbf{Y} \in \mathbb{R}^{5}.$$

Experiment:

- 1. We generate M samples  $\{(\mathbf{y}^{(i)}, \mathbf{x}^{(i)})\} \sim \pi_{\mathbf{Y},\mathbf{X}}$ .
- 2. We apply the analysis map of the EnKF and the EnRF to assimilate a realization  $m{y}^\star \sim \pi_{f Y}$
- 3. We compute the sample mean and covariance for the two posterior ensembles.

#### Posterior mean estimates



**Left panel:** Evolution of the error RMSE =  $||\hat{\mu}_{filter} - \mu_{\mathbf{X} | \mathbf{y}^{\star}}||_2 / \sqrt{n}$  with the ensemble size *M*.

**Right panel:** Empirical distribution of the RMSE over 1000 realizations of  $y^*$  using M = 600 samples.

- Both filters are consistent,
- but the sEnKF has a much slower convergence rate than the EnRF.

#### Posterior covariance estimates



• The sEnKF is not consistent to estimate covariances of *t*-distributions.

## Analysis step of the EnRF



Le Provost, Baptista, Marzouk and Eldredge

## Estimate the tail-heaviness on the fly

- $\bullet\,$  We can estimate the dof at each assimilation cycle with the EMq  $\,$
- The EnRF can adapt its analysis map to the tail heaviness of the data!

Limitation: Computational cost of the EMq when the dof is unknown.

 $\ensuremath{\mathsf{ldea:}}$  Present 3 variants of the EnRF that differ in the frequency and the samples used to estimate the dof

- 1. The RefreshEnRF: We maintain a buffer of past filtering samples, and estimate the dof with this larger ensemble every  $\Delta t_{refresh}$ .
- 2. The FixedEnRF: The dof is estimated once from a free-run of the state-space model and fixed for the entire assimilation ( $\Delta t_{refresh} = \infty$ )
- 3. The AdaptEnRF: The dof is estimated at each assimilation cycle ( $\Delta t_{refresh} = \Delta t_{obs}$ )

#### Lorenz-63



Empirical degree of freedom  $\hat{\nu}_{(\mathbf{Y}_t, \mathbf{X}_t)}$  with M = 150,1000 samples of the joint forecast density  $\{(\mathbf{y}_t^{(i)}, \mathbf{x}_t^{(i)})\} \sim \pi_{(\mathbf{Y}_t, \mathbf{X}_t) \mid \mathbf{Y}_{1:t-1}}$  for the Lorenz-63 problem with *t*-distributed observation noise.

#### RMSE results for Lorenz-63



Evolution of the RMSE with the ensemble size *M* for the Lorenz-63 model with *t*-distributed observation noise with  $\nu = 3.0$ .

We optimally tune the multiplicative inflation of the sEnKF.

25% reduction of the RMSE with the EnRF!

#### The different EnRFs don't require tuning: Plug and Play!

Le Provost, Baptista, Marzouk and Eldredge

## Conclusion and Outlook

#### Summary:

- We introduce the EnRF that generalizes the EnKF to heavy-tailed *t*-distributions
- The EnRF adapts its prior-to-posterior to the tail-heaviness of the data
   Adaptive and data-dependent multiplicative inflation
- The EnRF requires no tuning: Plug and Play!

**Software:** The EnRF will be soon available in TransportBasedInference.jl



Acknowledgements: Support from National Science Foundation is gratefully acknowledged.

Contact: mathieuleprovost1@gmail.com

#### References I



Baptista, R., Zahm, O., and Marzouk, Y. (2020).

An adaptive transport framework for joint and conditional density estimation. *arXiv preprint arXiv:2009.10303.* 

```
Doğru, F. Z., Bulut, Y. M., and Arslan, O. (2018).
```

Doubly reweighted estimators for the parameters of the multivariate t-distribution. *Communications in Statistics-Theory and Methods*, 47(19):4751–4771.

Evensen, G. (1994).

Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics.

Journal of Geophysical Research: Oceans, 99(C5):10143–10162.

Marzouk, Y., Moselhy, T., Parno, M., and Spantini, A. (2016).
 Sampling via measure transport: An introduction.
 Handbook of Uncertainty Quantification, pages 1–41.

Spantini, A., Baptista, R., and Marzouk, Y. (2022).
 Coupling Techniques for Nonlinear Ensemble Filtering.
 SIAM Review, 64(4):921–953.
 Publisher: Society for Industrial and Applied Mathematics.

Le Provost, Baptista, Marzouk and Eldredge