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Motivations

Departure from Gaussian tails is a common feature of geophysical inference problems due to
the nonlinear dynamical and observation processes and the uncertainty from the physical
sensors.

Many filters like the EnKF assume at least that the tails of the forecast distribution are
Gaussian and not suited for heavy-tailed distributions.

Objective: How can do consistent inference in heavy-tailed filtering problems?
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Problem setting

We consider a generic state-space model:

The evolution of the state (Xt)t≥0 is fully described by the initial distribution πX0 and the
dynamical model:

Xt = f (Xt−1) +Wt

We collect observations (Yt)t>0 at every time step according to the observation model:

Yt = h(Xt) + E t

Objective: Sequentially estimate the filtering density πt | t := πXt | Y1:t=y1:t
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Generic ensemble filtering algorithm

Ensemble filtering methods propagate a set of M particles {x (1), . . . , x (M)} to form an
empirical approximation for the filtering density πt | t .

1. Forecast step: Filtering dist. at time t − 1 πt−1 | t−1 −→ Forecast dist. πt | t−1

We obtain samples {x (1), . . . , x (M)} ∼ πt | t−1

2. Analysis step: Forecast dist. πt | t−1 −→ Filtering dist. at time t πt | t
We obtain samples {x (1), . . . , x (M)} ∼ πt | t

Ensemble filtering algorithms share the same forecast step but differ in the analysis step.
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A “transformative” view of the analysis step

Prior πt | t−1 Posterior πt | t

x i T (x i )

Analysis map T

Analysis step: application of the analysis map T : Prior πt | t−1 −→ Posterior πt | t

The analysis map of the Kalman filter TKF :

TKF (y , x) = x −ΣX,YΣ
−1
Y (y − y⋆) = x − K (y − y⋆)

The ensemble Kalman filter (EnKF) [Evensen, 1994] constructs an estimate K̂ ∈ Rn×d from
limited samples {x1, . . . , xM} of the forecast distribution.

Le Provost, Baptista, Marzouk and Eldredge An ensemble filter for heavy-tailed t-distributions 5/28



Transport map between two probability measures

• Seek a transport map S that pushes forward π to η, i.e. S♯π = η.

• Generate cheap and independent samples x ∼ π ⇒ S(x) ∼ η.

Densities

S♯πS♯η

Target π

Reference η

Samples

S(x)S−1(z)
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Looking for a good map [Marzouk et al., 2016]

Consider the Knothe-Rosenblatt (KR) rearrangement S s.t. S♯π = η

S(z) = S(z1, z2, · · · , zm) =


S1 (z1)
S2 (z1, z2)
...
Sm (z1, z2, . . . , zm)

 .

• The KR has many nice features for Bayesian inference, e.g. easily invertible and det∇S(x)
is simple to evaluate [Marzouk et al., 2016, Baptista et al., 2020].

• The 1D map ξ 7→ Sk(x1, x2, . . . , xk−1, ξ) characterizes the marginal conditional
πXk | X1:k−1=x1:k−1

(ξ).

Gaussian case

Consider X ∼ πX = N (µ,Σ) and let LL⊤ = Σ−1 be the Cholesky factorization of Σ−1.
Then S(x) = L(x − µ) is the KR that pushes forward πX to η = N (0n, I n).
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Construction of the analysis map [Spantini et al., 2022]

Consider the KR rearrangement S s.t. S♯πY,X = η

S(y , x) =

[
SY(y)

SX (y , x)

]
,

• The map ξ 7→ SX (y⋆, ξ) pushes forward πX | Y(· | y⋆) to η

• SX (Y,X) ∼ η

πY,X πX | Y=y⋆T (y , x)
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Derivation of the analysis map of the Kalman filter [Spantini et al., 2022]

T (y , x) = SX (y⋆, ·)−1 ◦ SX (y , x)

We recover the analysis map of the Kalman filter when

1. SX is linear

2. The reference density is the standard normal distribution η = N (0d+n, I d+n)

Ensemble filters differ in the choice of • the reference density

• the class of functions to represent SX

• the estimation of SX from samples
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Limitations of light-tailed filter for heavy-tailed distributions

Many ensemble filters like the EnKF assume at least that the tails of the forecast
distribution are Gaussian.

These filters don’t provide consistent inference for heavy-tailed filtering problems.

Our contribution: Introduce a new ensemble filter called ensemble robust filter (EnRF)
based on the following assumptions:

• We restrict SX to be linear

• We choose a reference distribution whose tail-heaviness can be adapted to the data.
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t–distributions

t–distributions are a family of distributions parameterized by a mean µX ∈ Rn, a scale matrix
CX ∈ Rn×n, and a degree of freedom νX ∈ [1,∞[.

The degree of freedom νX characterizes the tail-heaviness:

• For νX = 1, we recover the Cauchy distribution

• For νX = ∞, we recover the Gaussian distribution

Relation between the parameters and the moments of a t–distribution:

EπX [x ] = µX, for νX > 1

EπX

[
(x − µX)(x − µX)

⊤] = νX
νX − 2

CX for νX > 2.
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Probability density function of t–distributions
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Quantiles of the t–distributions
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Useful properties of t–distributions:
1. t–distributions are closed under affine transformations:

If X ∼ St (µX,CX, νX), then Z = AX+ b ∼ St
(
AµX + b,ACXA⊤, νX

)
2. Conditional and marginal distributions are known in closed form.

Consider

[
Y
X

]
∼ St

([
µX

µY

]
,

[
CY C⊤

X,Y

CX,Y CX

]
, ν

)

• Marginal: X ∼ St (µX,CX, νX)

• Conditional: πX | Y=y ∼ St
(
µX | Y=y ,CX | Y=y , νX | Y=y

)
with

µX | y = µX + CX,YC−1
Y (y − µY)

CX | Y=y =
ν + (y − µY)

⊤ CY
−1 (y − µY)

ν + d︸ ︷︷ ︸
αY

(
y
)
>0

(
CX − CX,YCY

−1CX,Y
⊤
)

︸ ︷︷ ︸
Schur complement CX\Y

νX | Y=y = ν + d
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Analysis map T ν for t–distributions

Let Sν the KR that pushes forward the joint t–distribution πY,X with dof ν to a “judicious”
t–distribution ην with same dof, i.e. Sν♯πY,X = ην .

Key: Sν can be computed in closed form (new result).

We obtain the analysis map T ν : Rd × Rn → Rn by partial inversion of SX
ν :

T ν(y , x) = SX
ν (y⋆, ·)−1 ◦ SX

ν (y , x)

= µX + CX,YC−1
Y (y⋆ − µY) +

√
αY

(
y⋆

)
αY

(
y
) [

(x − µX)− CX,YC−1
Y (y − µY)

]
Note that CX,YC−1

Y = ΣX,YΣ
−1
Y .
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Connection with the Kalman filter

Let’s perform an asymptotic expansion of T ν for large ν:

T ν = T∞︸︷︷︸
TKF

+ higher order terms in O

(
1

ν

)

• The zeroth order term T∞ is exactly the analysis map of the Kalman filter TKF.

• The higher order terms correct the analysis map TKF to account for the finite degree of
freedom.

Takeaway

The analysis map T ν generalizes the analysis map of the Kalman filter for t–distributions
with finite degree of freedom!
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Sensitivity to outlying synthetic observations

Context: Observation models often rely on simplified physics and suffer from
mis-specifications of the observation operator and observation noise.

Let (y (j), x (j)) be a joint forecast sample with an outlying synthetic observation y (j) generated

by the likelihood model πY | X=x (j) , such that δY
(
y (j)

)
=

(
y (j) − µY

)⊤
CY

−1
(
y (j) − µY

)
→ ∞.

Then, the analysis map T ν reduces to

T ν(y , x) = µX + CX,YC−1
Y (y⋆ − µY).

Takeaways:

• The outlying observation y (j) vanishes from the analysis map.

• The prior sample x (j) is mapped to the posterior mean/median/mode.
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What is the pushforward of πX by the maps T ν and TKF?

T ν leads to exact inference: T ν♯πX = πX | y⋆ = St
(
µX | y⋆ ,CX | y⋆ , νX | y⋆

)
:

µX | y⋆ = µX + CX,YC−1
Y (y⋆ − µY),

CX | y⋆ = αY

(
y⋆

)
CX\Y,

νX | y⋆ = ν + d ,

(1)

We interpret αY

(
y⋆

)
as an adaptive and data-dependent multiplicative inflation.

TKF♯πX = St
(
µTKF♯πX

,CTKF♯πX , νTKF♯πX

)
with

µTKF♯πX
= µX + CX,YC−1

Y (y⋆ − µY),

CTKF♯πX = 1×CX\Y,

νTKF♯πX = ν + 0.

(2)

The Kalman filter is only consistent to estimate the mean value of t–distributions.
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Challenges of estimating heavy-tailed distributions from samples

The classical sample mean and covariance estimators are derived from a maximum likelihood
approach for Gaussian distributions.

These light-tailed estimators are very sensitive to outliers and introduce additional variance.

We use a “regularized” expectation-maximization algorithm (EMq) to estimate the heavy-tailed
joint forecast distribution πY,X from {(y (i), x (i))} [Doğru et al., 2018].

We call ensemble robust filter (EnRF) the ensemble filter that estimates T ν with the EMq
from the joint forecast samples {(y (i), x (i))}.
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Empirical performance of light-tailed and heavy-tailed estimators

Consider

[
Y
X

]
∼ St

([
µX

µY

]
,

[
CY C⊤

X,Y

CX,Y CX

]
, ν

)
with ν = 2.1, X ∈ R10 and Y ∈ R5.

Experiment:

1. We generate M samples {(y (i), x (i))} ∼ πY,X.

2. We apply the analysis map of the EnKF and the EnRF to assimilate a realization y⋆ ∼ πY

3. We compute the sample mean and covariance for the two posterior ensembles.
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Posterior mean estimates
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• Both filters are consistent,

• but the sEnKF has a much slower convergence rate than the EnRF.
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Posterior covariance estimates
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• The sEnKF is not consistent to estimate covariances of t–distributions.
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Analysis step of the EnRF

x i ∼ πX

Sample y (i) from πY | X(· | x (i)):

y (i) = h(x (i)) + ϵ(i)

{(y (i), x (i))} ∼ πY,X

Estimate πY,X from {(y (i), x (i))}
with EMq

Estimated distribution

Estimate and apply T̂ ν :

x (i)
a = T̂ ν(y (i), x (i))

x (i)
a ∼ πX | Y=y⋆
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Estimate the tail-heaviness on the fly

• We can estimate the dof at each assimilation cycle with the EMq

• The EnRF can adapt its analysis map to the tail heaviness of the data!

Limitation: Computational cost of the EMq when the dof is unknown.

Idea: Present 3 variants of the EnRF that differ in the frequency and the samples used to
estimate the dof

1. The RefreshEnRF: We maintain a buffer of past filtering samples, and estimate the dof
with this larger ensemble every ∆trefresh.

2. The FixedEnRF: The dof is estimated once from a free-run of the state-space model and
fixed for the entire assimilation (∆trefresh = ∞)

3. The AdaptEnRF: The dof is estimated at each assimilation cycle (∆trefresh = ∆tobs)
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Lorenz-63

Empirical degree of freedom ν̂(Yt ,Xt ) with M = 150, 1000 samples of the joint forecast density

{(y (i)
t , x (i)

t )} ∼ π(Yt ,Xt ) | Y1:t−1
for the Lorenz-63 problem with t–distributed observation noise.
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RMSE results for Lorenz-63
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Evolution of the RMSE with the ensemble size M for the Lorenz-63 model with t–distributed
observation noise with ν = 3.0.

We optimally tune the multiplicative inflation of the sEnKF.

25% reduction of the RMSE with the EnRF!

The different EnRFs don’t require tuning: Plug and Play!
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Conclusion and Outlook

Summary:

• We introduce the EnRF that generalizes the EnKF to heavy-tailed t–distributions

• The EnRF adapts its prior-to-posterior to the tail-heaviness of the data
=⇒ Adaptive and data-dependent multiplicative inflation

• The EnRF requires no tuning: Plug and Play!

Software: The EnRF will be soon available in TransportBasedInference.jl
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