
Results: shuffled autoregressive modelImportance of ordering

Map adaptation

These properties can be used to efficiently generalize the linear

smoothers in box .

Map parameterization
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Triangular ensemble transport methods

Nonlinear updates

Ensemble-based inference is a key

part of applied data assimilation.

Linear methods such as the EnKF

are only optimal for multivariate

Gaussian distributions.

states

observations

predictions

The parameterization of the map component functions , especially the level of

complexity of its nonmonotone and monotone terms and , is an important decision

affecting the map‘s expressiveness and bias-variance trade-off.

Motivation
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Linear updates are

often unreliable for

non-Gaussian pdfs.

Such systems need

nonlinear updates.

Triangular transport seeks a monotone, invertible map

from a complex target distribution , known only through

samples, to a user-defined reference distribution .

Triangular maps can be conditionally inverted in order to

characterize conditionals of the target pdf. This makes

these methods very useful for Bayesian inference.1,2,3

A triangular transport map looks like this:

nonmonotone terms monotone term

Map adaptation identifies parsimonious map parametrizations,

shaping the map to the demands of the system. We can inform this

process by analyzing the map output‘s deviation from the reference .

Increasing the map’s diagonal 

complexity Gaussianizes marginals.

Increasing the map’s off-diagonal 

complexity decouples marginals.

reference map output complexity level

Increasing the complexity of the diagonal ( ) and off-diagonal ( )

terms has predictable effects on the map output:

The map adaptation algorithm can even detect graphical structure.4

In data assimilation, this can yield localization patterns.
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Variable ordering plays an important role in triangular transport. It not only defines on

what variables we can condition but affects sparsity and map complexity.

Algorithms such as the reverse Cuthill-McKee algorithm can identify orderings which

result in sparser maps.6 We have created a variant of this algorithm which respects block

structure, ensuring we can condition on the desired variables.

The graph recovered by the map follows this pattern: (1) Select the highest-numbered

node | (2) Form a clique between its neighbours | (3) Eliminate the node and remove its

connecting edges. Step 2 can introduce undesirable fill-in edges, reducing sparsity.5

Good ordering Bad orderingresulting graph resulting graph

edge no edge fill-in edge

After six iterations, our 

mofidied rCM algorithm 

recovers the original graph , 

maintaining block structure.

We shuffle the entries of a 

Markov chain graph in three 

blocks, obscuring the sparse 

graphical structure.

Modified reverse Cuthill-McKee

Block 1

Block 2

Block 3

Block 1

Block 2

Block 3

• Map adaptation finds parsimonious maps which reveal

and exploit conditional independence

• The degree of conditional independence is affected by

the map‘s variable ordering

• A modified reverse Cuthill-McKee algorithm can identify

orderings which reduce fill-in, yielding greater sparsity

For every block in reverse order:

Repeat until all nodes in block have

been absorbed into

If Q contains no nodes in block:

Add minimum-degree node

of this block to

else:

Add first node of this block in

to

Add all neighbors of node to

Flip order of

Initiate empty lists for ordering and

queue . Determine degree of nodes.

Summary


