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• Basic iterative ensemble smoother (IES) without localization:

𝑚𝑗
𝑖+1 = 𝑚𝑗

𝑖 + 𝐾 𝑑𝑜 − 𝑔 𝑚𝑗
𝑖 , 𝑗 = 1, 2, … , 𝑁𝑒

➢ 𝑑𝑜 ∈ 𝑅𝑝×1: 𝑝-dimensional observed field data
➢ 𝑚 ∈ 𝑅𝑛×1: 𝑛-dimensional reservoir model
➢ 𝑖:    iteration index
➢ 𝑗:    ensemble member index
➢ 𝑔:   reservoir simulator (ignoring model errors)
➢ 𝐾: Kalman-gain matrix
➢ 𝑁𝑒: ensemble size
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• IES often runs with a small ensemble
➢ Spurious correlations (sampling errors)
➢ Rank deficiency
➢ Degraded data assimilation (history matching) performance

• Localization often adopted for improved performance

• IES with (Kalman-gain) localization

𝑚𝑗
𝑖+1 = 𝑚𝑗

𝑖 + (𝑇 ∘ 𝐾) 𝑑𝑜 − 𝑔 𝑚𝑗
𝑖 , 𝑗 = 1, 2, … , 𝑁𝑒

➢ 𝑇 ∈ [0,1]: localization (or tapering) matrix
➢ 𝑇 ∘ 𝐾: elementwise product between 𝑇 and 𝐾
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𝑚𝑗
𝑖+1 = 𝑚𝑗

𝑖 + (𝑇 ∘ 𝐾) 𝑑𝑜 − 𝑔 𝑚𝑗
𝑖 , 𝑗 = 1, 2, … , 𝑁𝑒

• Essential question: how to construct the tapering matrix 𝑇?

• Here the focus on correlation-based localization
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• Additional notations:

𝑚𝑗
𝑖+1 = 𝑚𝑗

𝑖 + (𝑇 ∘ 𝐾) 𝑑𝑜 − 𝑔 𝑚𝑗
𝑖

➢ 𝑚𝑗
𝑖

𝑠
: the 𝑠-th model variable of 𝑚𝑗

𝑖+1

➢ 𝑔 𝑚𝑗
𝑖

𝑘
: the 𝑘-th element of 𝑔 𝑚𝑗

𝑖

➢ 𝑇 ≡ [𝑡𝑠𝑘]
➢ 𝑡𝑠𝑘: element of 𝑇 on the 𝑠-th row and the 𝑘-th column

• In correlation-based localization: 
𝑡𝑠𝑘 = ℎ𝜃 𝜌𝑠𝑘

➢ 𝜌𝑠𝑘: sample correlation between the ensembles 𝑚𝑗
𝑖

𝑠
and 𝑔 𝑚𝑗

𝑖

𝑘
, for 𝑗 = 1, 2, … , 𝑁𝑒

➢ ℎ𝜃:  tapering function, parameterized by a set of hyper-parameters 𝜃
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• Example 1*:
𝑡𝑠𝑘 = ℎ𝜃 𝜌𝑠𝑘

ℎ𝜃 𝜌𝑠𝑘 = ℎ 𝜌𝑠𝑘 > 𝜃 = ቊ
1, 𝑖𝑓 𝜌𝑠𝑘 > 𝜃
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(Heaviside function)

➢ 𝜃: threshold value (hard-thresholding)

➢ 𝜃 empirically chosen, as in, e.g., Luo et. al*

➢ Referred to as empirical tuning strategy hereafter

*Luo, X., Bhakta, T. and Naevdal, G., 2018. Correlation-based adaptive localization with applications to ensemble-based 
4D-seismic history matching. SPE Journal, 23(02), pp.396-427.
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• Example 2 (AutoAdaLoc)*:
𝑡𝑠𝑘 = ℎ𝜃 𝜌𝑠𝑘

ℎ𝜃 𝜌𝑠𝑘 = ℎ𝐺𝐶

1 − 𝜌𝑠𝑘

1 − 𝜃

➢ ℎ𝐺𝐶 : Gaspari-Cohn (GC) function

➢ 𝜃: threshold value (soft-thresholding)

➢ 𝜃 chosen based on statistical analyses, before data assimilation starts; 

➢ Referred to as prior tuning strategy hereafter

*Luo, X. and Bhakta, T., 2020. Automatic and adaptive localization for ensemble-based history matching. 
Journal of Petroleum Science and Engineering, 184, p.106559. 
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𝑡𝑠𝑘 = ℎ𝐺𝐶

1 − 𝜌𝑠𝑘

1 − 𝜃
⇒ 𝑡𝑠𝑘 = ℎ𝐺𝐶

1 − 𝜌𝑠𝑘

ℓ𝑘

➢ 𝜃 ≡ {ℓ𝑘, 𝑘 = 1,2, … , 𝑝} : localization length scales varying for each observation data 
point (𝜃 in the same size as field data 𝑑𝑜)

➢ Hyper-parameters can also vary over each model variable and each data point (i.e., 
𝜃 ≡ {ℓ𝑠𝑘 , 𝑠 = 1,2, … , 𝑛; 𝑘 = 1,2, … , 𝑝} ), but maybe too many to be practical (a lighter 
choice: 𝜃 ≡ {ℓ𝑠, 𝑠 = 1,2, … , 𝑛}, i.e., varying over each model variable)

➢ Localization called parameterized AutoAdaLoc (P-AutoAdaLoc) scheme hereafter

➢ 𝜃 iteratively updated during data assimilation

➢ Referred to as posterior tuning strategy hereafter



11
31 October – 2 November 2018 
Astana, KazakhstanContinuous hyper-parameter optimization (CHOP)*

• CHOP designed to estimate (an ensemble of) algorithmic  hyper-parameters 𝜃𝑗
𝑖

𝑗=1

𝑁𝑒
in a 

generic model update formula 𝑚𝑗
𝑖+1 = 𝑓(𝑚𝑗

𝑖 , 𝜃𝑗
𝑖|𝑑𝑜)

• Containing as a special case an IES with parameterized localization 

𝑚𝑗
𝑖+1 = 𝑓 𝑚𝑗

𝑖 , 𝜃𝑗
𝑖 𝑑𝑜 ≡ 𝑚𝑗

𝑖 + (𝑇(𝜃𝑗
𝑖) ∘ 𝐾) 𝑑𝑜 − 𝑔 𝑚𝑗

𝑖

*Luo, X. and Xia, C.A, 2022. Continuous Hyper-parameter OPtimization (CHOP) in an ensemble Kalman filter. 
Frontiers in Applied Mathematics and Statistics, 2022, 8, p. 1021551.
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• Two-step update procedure:  Given ensembles of 𝑚𝑗
𝑖

𝑗=1

𝑁𝑒
and 𝜃𝑗

𝑖

𝑗=1

𝑁𝑒
at the 𝑖-th iteration 

step

➢ Step 1: model update (through an IES):

𝑚𝑗
𝑖+1 = 𝑚𝑗

𝑖 + 𝑇 𝜃𝑗
𝑖 ∘ 𝐾 𝑑𝑜 − 𝑔 𝑚𝑗

𝑖 , 𝑗 = 1, 2, … , 𝑁𝑒

𝐾 computed with respect to 𝑚𝑗
𝑖

𝑗=1

𝑁𝑒
and 𝑔(𝑚𝑗

𝑖 )
𝑗=1

𝑁𝑒

➢ Forward simulations to obtain 𝑔(𝑚𝑗
𝑖+1)

𝑗=1

𝑁𝑒
:

➢ Step 2: hyper-parameter update (also through an IES): 

𝜃𝑗
𝑖+1 = 𝜃𝑗

𝑖 + 𝑇 𝜃𝑗
𝑖 ∘ ෩𝐾 𝑑𝑜 − 𝑔 𝑚𝑗

𝑖+1 , 𝑗 = 1, 2, … , 𝑁𝑒

෩𝐾 computed with respect to 𝜃𝑗
𝑖

𝑗=1

𝑁𝑒
and 𝑔(𝑚𝑗

𝑖+1)
𝑗=1

𝑁𝑒

⃪ existing in the original IES algorithm

⃪ existing in the original IES algorithm

⃪ new component
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𝜃𝑗
𝑖+1 = 𝜃𝑗

𝑖 + 𝑇 𝜃𝑗
𝑖 ∘ ෩𝐾 𝑑𝑜 − 𝑔 𝑚𝑗

𝑖+1 , 𝑗 = 1, 2, … , 𝑁𝑒

• Optimization criterion: 𝜃𝑗
𝑖+1

𝑗=1

𝑁𝑒
chosen to minimize/reduce average data mismatch 

between 𝑔(𝑚𝑗
𝑖+1)

𝑗=1

𝑁𝑒
and 𝑑𝑜

• CHOP converted to a normal parameter estimation problem (and solved by IES)

For those who are interested: 𝜃𝑗
𝑖+1

𝑗=1

𝑁𝑒
approximate solution to the following minimum-average cost (MAC) problem

min
𝜃𝑗

𝑖+1

𝑗=1

𝑁𝑒

1

𝑁𝑒
෍

𝑗

𝐿 𝜃𝑗
𝑖+1

𝐿 𝜃𝑗
𝑖+1 =

1

2
𝑑𝑜 − 𝑔 𝑓(𝑚𝑗

𝑖 , 𝜃𝑗
𝑖+1|𝑑𝑜)

𝑇

𝐶𝑑
−1 𝑑𝑜 − 𝑔 𝑓(𝑚𝑗

𝑖 , 𝜃𝑗
𝑖+1|𝑑𝑜) +

𝛾

2
𝜃𝑗

𝑖+1 − 𝜃𝑗
𝑖 𝑇

𝐶𝜃
−1 𝜃𝑗

𝑖+1 − 𝜃𝑗
𝑖

*Luo, X., Cruz, W., Zhang, X. L., & Xiao, H. Hyper-Parameter Optimization for Improving the Performance of Localization in an 
Iterative Ensemble Smoother. Preprint, available at SSRN 4388296.
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Experimental settings

Model 
information

167 x 167
36 producers + 25 injectors 

Uncertain parameters: PERMX

Production data 
used for history 
matching 

WOPR, WWPR, WBHP, WWIR
total number = 1098

HM algorithm IES with AutoAdaLoc vs. IES with P-AutoAdaLoc
Ensemble size: 100 

Initial ensemble of
localization length
scales

i.i.d samples from the uniform distribution on the 
interval [0.23, 0.43] (manual choice)

*Chen, Y. and Oliver, D.S., 2010. Cross-covariances and localization for EnKF in multiphase flow data assimilation. 
Computational Geosciences, 14(4), pp.579-601.
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Grid geometry of the Brugge field

3D case: Brugge benchmark

Experimental settings

Model 
information

139 x 48 x 9
20 producers + 10 injectors 

Uncertain parameters: PERMX, PERMY, PERMZ, PORO

Production data 
used for history 
matching 

WOPR, WWCT, WBHP
total number = 1400

HM algorithm IES with AutoAdaLoc vs. IES with P-AutoAdaLoc
Ensemble size: 103 

Initial ensemble of
localization length
scales

i.i.d samples from the uniform distribution on the 
interval [0.23, 0.43] (manual choice)
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Summary

Empirical 
tuning

Prior
tuning

Posterior
tuning

Hyper-
parameter 
selection

Experience 
trial & error

Statistical 
analysis

Data-driven
optimization

Correlation-based localization
with hard-thresholding 

(Luo et. al 2018) 

AutoAdaLoc
(Luo & Bhakta 2020) 

P-AutoAdaLoc
(current work)

Example:
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