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Iterative ensemble smoother (IES)

Basic iterative ensemble smoother (IES) without localization:

m]lf+1 =m]’5 +K(d0 —g(m]‘: ),j =1,2,...,N,



Localization in the IES

IES often runs with a small ensemble
» Spurious correlations (sampling errors)
» Rank deficiency
» Degraded data assimilation (history matching) performance

Localization often adopted for improved performance

IES with (Kalman-gain) localization

J

mi*t = m! + (T oK) (d° — g(m)),j =1,2,..



Localization in the IES NR CE

mi*t = m + (T oK) (d° = g(m})).j =1,2,..., N,

* Essential question: how to construct the tapering matrix 7?

* Here the focus on correlation-based localization



Correlation-based localization N YR CE

 Additional notations:
mi*1 :m]l:+(T0K)(d —g(m ))

> [m ] the s-th model variable of m‘“

> [g( )] : the k-th element ofg( )

> T = |t ]
» to.: element of T on the s-th row and the k-th column

* |n correlation-based localization:
tsk = hg (psk)

> Dqr: sample correlation between the ensembles [ ] and [g( )] ,forj=1,2,...,N,

» hg: tapering function, parameterized by a set of hyper parameters 9



Correlation-based localization

 Example 1*:
tsk = ho(psk)

1, if |psk| > 0

0, otherwise (Heaviside function)

hH(psk) — h(lpskl >0) = {

» 0: threshold value (hard-thresholding)
» 0 empirically chosen, as in, e.g., Luo et. al*

» Referred to as empirical tuning strategy hereafter

*Luo, X., Bhakta, T. and Naevdal, G., 2018. Correlation-based adaptive localization with applications to ensemble-based
4D-seismic history matching. SPE Journal, 23(02), pp.396-427.



Correlation-based localization

* Example 2 (AutoAdaloc)*: N —
tsk — hg (pSk) o \\\ —Threshold value = 0. //,{
1 —lpskl\ i
h9 (pSk) — hGC 1 _ 9 §0.5 / J
-50_4 \\\ ) /‘/
f_u ZZ - \\\ /
» hgc: Gaspari-Cohn (GC) function o N

Sample correlation coefficient

» 0: threshold value (soft-thresholding)
» 0 chosen based on statistical analyses, before data assimilation starts;

» Referred to as prior tuning strategy hereafter

*Luo, X. and Bhakta, T., 2020. Automatic and adaptive localization for ensemble-based history matching.
Journal of Petroleum Science and Engineering, 184, p.106559.
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e Parameterized correlation-based localization



Hyper-parameters in correlation-based localization N: 'RCE

1 — |psl 1 — |pskl
tsk=hGC< 1_05 ):f‘tsk=hcc< fks

» 0 ={f;,k=1,2..,p}:localization length scales varying for each observation data
point (6 in the same size as field data d°)

» Hyper-parameters can also vary over each model variable and each data point (i.e.,
0={fy,s=12,..,n; k=1.2,..,p}), but maybe too many to be practical (a lighter
choice: 0 = {#;,s = 1,2, ...,n}, i.e., varying over each model variable)

» Localization called parameterized AutoAdaloc (P-AutoAdaloc) scheme hereafter

» 0 iteratively updated during data assimilation

» Referred to as posterior tuning strategy hereafter



Continuous hyper-parameter optimization (CHOP)* R CE

i\Ne .
e CHOP designed to estimate (an ensemble of) algorithmic hyper-parameters {9]-‘}],_1 ina

generic model update formula m]“r1 = f(m;, 6; 6}d°)

* Containing as a special case an IES with parameterized localization

l+1 f( m}, ]|d0) m +(T(9) K) (do g( ))

*Luo, X. and Xia, C.A, 2022. Continuous Hyper-parameter OPtimization (CHOP) in an ensemble Kalman filter.
Frontiers in Applied Mathematics and Statistics, 2022, 8, p. 1021551.



Teninrat

Continuous hyper-parameter optimization (CHOP) N: RCE

AN AN
 Two-step update procedure: Given ensembles of {m}}jfl and {9}};1 at the i-th iteration

step

» Step 1: model update (through an IES): <« existing in the original [ES algorithm

mi*t = m! + (T(8)) < K) (d° — g(m})).j =1,2,..., N,

AN : N
K computed with respect to {m}}jjl and {g(‘m})}jjl

' Ne e . :
» Forward simulations to obtain {g (m}“)}jzlz « existing in the original IES algorithm

» Step 2: hyper-parameter update (also through an IES): < new component
1 ni N 1 o
0/t =6} + (1(6}) oK) (d° — g(mi*1)),j =1,2,..., N,

~ :yNg ] Ne
K computed with respect to {9]-‘}]:1 and {g(m;ﬂ)}j:l



Continuous hyper-parameter optimization (CHOP)* N RCE

0/t =6} + (1(6}) oK) (d° — g(mi*1)).j =1,2,..., N,

. 1N
e Optimization criterion: {H]-‘“}jfl chosen to minimize/reduce average data mismatch

. Ne
between {g(m;“)}j:l and d°

 CHOP converted to a normal parameter estimation problem (and solved by IES)

*Luo, X., Cruz, W., Zhang, X. L., & Xiao, H. Hyper-Parameter Optimization for Improving the Performance of Localization in an
Iterative Ensemble Smoother. Preprint, available at SSRN 4388296.
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2D case: multiple 5spots (M-5Spots)*

Experimental settings

Model 167 x 167
information 36 producers + 25 injectors
Uncertain parameters: PERMX

160 o %

120+ tz;‘f’f’,.j‘;' ’:“"' ’

Plo Production data WOPR, WWPR, WBHP, WWIR
80— used for history total number = 1098
. matching
4o; SERSSINS HM algorithm IES with AutoAdaloc vs. IES with P-AutoAdaloc

Ensemble size: 100

Initial ensemble of i.i.d samples from the uniform distribution on the
localization length interval [0.23, 0.43] (manual choice)
scales

*Chen, Y. and Oliver, D.S., 2010. Cross-covariances and localization for EnKF in multiphase flow data assimilation.
Computational Geosciences, 14(4), pp.579-601.



2D case: multiple 5spots (M-5Spots)

Table 2: Data mismatch (DM). root mean squared error (RMSE) and ensemble spread in the M-5Spots case.

Initial ensemble Final ensemble (AutoAdal.oc) Final ensemble (P-AutoAdaloc)
DM (mean + STD) (1.7091 £ 0.3517) x 107 (1.7896 + 0.5328) x 10° (7.2535 4+ 1.1881) x 104
RMSE (mean + STD) 1.6647 £ 0.0707 1.3811 4+ 0.0357 1.2550 4 0.0340

Spread 1.1864 0.9293 0.5819




2D case: multiple 5spots (M-5Spots)
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Figure 5: PERMX maps (in the natural logarithmic scale) with respect to (a) the reference model; (b) the mean of the initial ensemble;
(c) — (d) the means of the final estimated (est.) ensembles obtained by the IES algorithm with the AutoAdal.oc and the P-AutoAdal.oc
schemes, respectively, in the M-5Spots case. In all the maps. the small dots indicate the locations of wells.



3D case: Brugge benchmark

Experimental settings

Model 139x48 x9
information 20 producers + 10 injectors
Uncertain parameters: PERMX, PERMY, PERMZ, PORO

i,

R
sz

Production data WOPR, WWCT, WBHP
used for history total number = 1400
il matching
~:§:’;E§%§§:‘% %:.,,. ‘”';;"« 2 ’% : X : . . o
S T ' HM algorithm |IES with AutoAdaloc vs. IES with P-AutoAdaloc

:
RS
%

Ensemble size: 103

Initial ensemble of .i.d samples from the uniform distribution on the
localization length interval [0.23, 0.43] (manual choice)
scales

Grid geometry of the Brugge field



3D case: Brugge benchmark

“RCE

Table 3: Data mismatch (DM), root mean squared error (RMSE) and ensemble spread in the Brugge benchmark case.

Initial ensemble

Final ensemble (AutoAdalLoc)

Final ensemble (P-AutoAdaLoc)

DM (mean £ STD)

(0.3623 £ 1.4900) x 101°

(0.9481 £ 1.9730) x 107

(3.9842 £ 7.0173) x 10°

Total RMSE (mean + STD)

1.5450 £ 0.3362

1.2610 = 0.1663

1.1645 4 0.1046

RMSE of PERMX (mean + STD)

1.6585 £ 0.3827

1.3498 =+ 0.1952

1.2399 4 0.1205

RMSE of PERMY (mean £+ STD)

1.6612 £ 0.3794

1.3546 = 0.1959

1.2444 4 0.1197

RMSE of PERMZ (mean 4+ STD)

2.0077 = 0.4096

1.6426 = 0.1937

1.5282 4 0.1307

RMSE of PORO (mean + STD)

0.0302 £ 0.0033

0.0298 + 0.0031

0.0259 4 0.0018

Spread

0.8661

0.6308

0.5435




3D case: Brugge benchmark
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Figure 8: PERMX maps (in the natural logarithmic scale) on Layer 2 of (a) the reference model; (b) the mean reservoir model of the
initial ensemble; (¢) — (d) the mean reservoir models of the final estimated (est.) ensembles obtained by the IES algorithm with the
AutoAdaloc and the P-AutoAdal.oc schemes, respectively, in the Brugge benchmark case. In all the maps, the small dots indicate the
locations of wells.



3D case: Brugge benchmark N &
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Figure 9: As in Figure 8, but for PORO map on Layer 2 of the Brugge benchmark case.
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Summary

Hyper-
parameter

selection

Experience
trial & error

Statistical
analysis

Data-driven
optimization

Empirical Posterior

tuning tuning

Example: Correlation-based localization AutoAdaloc P-AutoAdaloc
with hard-thresholding (Luo & Bhakta 2020) (current work)
(Luo et. al 2018)
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Continuous hyper-parameter optimization (CHOP)

Algorithm 1 Pseudo-code of the IES algorithm equipped with the original AutoAdaloc localization scheme. The texts in
red highlight places where differences take place, in comparison to the pseudo-code in Algorithm 2.

Require: Initial cnsembles of reservoir models M = {m }jv ;, simulated observations {g(m! )} and g(i’); Initial
regularization parameter 1°
1: Construct the tapering matrix T b cf. Egs. 14 16
2: Tteration index i + 0; TES not stopped + True
3 while IES not stopped do
¢ Calculate the Kalman-gain fike matrix K* for reservoir model update, g,

o o\
5 s 8y (sg(s;)Twlp) >l Bgs. 4 9
6 Update the reservoir models m}, e.g,
T mj-“ =+ (ToK’) (d” (mj)) bl Bq. 18

8 Run reservoir simulations to get the simulated observations {g(m’ y )} and g(m'™),

9:  Check data mismatch and update the value of /'~ b ¢f. Lo et al. (2010)

10:  Apply stopping criteria to decide whether to stop the IES ornot b ef. Luo ef al. (2015)
i1t

12: end while

RCE

Algorithm 2 Pseudo-code of the 1ES algorithm equipped with the P-AutoAdaloc localization scheme. The texts in red
highlight places where differences take place, in comparison to the pseudo-code in Algorithm 1.

Require: Initial ensembles of reservoir models M? = {mo}j 1, simulated observations {g(m )}N and g(m"), localization

7:

&

20:

length scales L° = {E?}j:l
- Tteration index i < 0; TES not stopped + True
- while IES not stopped do

1
2
3
4:
5
6

i=1
; Initial regularization parameter +°

Calculate the Kalman-gain like matrix K* for reservoir model update, e.g.,
o = = ) 1
K= 85,87 (858" +4'L) ool Bas. 49
for j=1,2,--- ,N. do

Construct the tapering matrix T (f’;) with the set of length scales £} e cf. Eq. 19
Update the reservoir models m}, e.g.,
Irlf—l b — m} + (T (Ej) o K'i) ((lff —g (m?)) > cf. Eq. 18
end for
Run reservoir simulations to get the simulated observations {g(m} AR =y and g(m ),

Calculate the Kalman-gain like matrix Kﬁ for hyper-parameter llI)(irlt[“ e.g.,
K = Sj(S)7 (85785 +'1,) b of. Egs. 25 - 30
for j=1,2,--- ,N. do _ _
Construct the tapering matrix Ty (€5) with the sct of length scales £} > similar to Eq. 19
Update the set of localization length scale f"‘-‘ c.g.,
6 = 0+ (Ty (6) 0 K) (dg - (111‘“)) b of. Bq. 31
end for _
Check data mismatch and update the value of ~*
Apply stopping criteria to decide whether to stop the IES or not
i1+ 1

> cf. Luo et al. (2015)
> cf. Luo et al. (2015)

21: end while




