
Experimental Set-Up

• Two feeding strategies were carried out with a CHO cell line producing an IgG 

antibody2. 

• The control experiment includes feeding of glucose and amnio acid nutrients on even 

days of the cell culture period, whereas the 10G5U experiment includes additional 

10mM galactose and 5mM uridine feeding on both Day 4 and Day 8.

Simulation Set-Up

• True values are simulated by adding process variance to a previous mechanistic 

model2, measurements are generated by adding the measurement variance obtained 

from experiments to the true values.

• In real-life scenarios, true value is unknown. The simulation of true value serves as a 

measure to check the effectiveness of EnKF. 
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Conclusion & Outlook

Methodology 

CHO Cell Metabolism Model
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NSD Synthesis Model

𝑟𝑝𝑟𝑜𝑑/𝑐𝑜𝑛𝑠 = 𝑓𝑀.𝑀. 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝑟𝑁𝑆𝐷 = 𝑟𝑝𝑟𝑜𝑑 − 𝑟𝑐𝑜𝑛𝑠

𝑑[𝑁𝑆𝐷]

𝑑𝑡
= 𝑟𝑁𝑆𝐷 - 𝐹𝑔𝑜𝑙𝑔𝑖𝑁𝑆𝐷
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Glycan Distribution (%)

Glycan prediction from NSD with Artificial  
Neural Network 1 or mechanistic model2

Results

❖ Glycosylation represents one of the most important quality attributes for a growing number of biotherapeutics such as monoclonal antibodies.

❖ Nucleotide sugar donors (NSD) are derived from monosaccharides (glucose, galactose, etc.) metabolism and are direct co-substrates for the glycosylation process.

❖ NSD dynamics provide tremendous insights on intracellular states for a variety of purposes, including glycan profile prediction1. It is highly desirable to predict NSD abundance.

❖ However, intracellular measurements are often challenging to obtain in the lab and are not routinely taken in industry. In comparison, extracellular metabolite measurements are

usually easily accessible.

❖ The objective of this work is to employ an Ensemble Kalman Filter (EnKF), utilizing a series of measurements over time and the dynamic process model, which connects the

metabolites (measured states correction) with NSDs (unmeasured states estimation).

Motivation & Goal  
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• Ensemble Kalman Filter is a Monte-Carlo implementation of Kalman filtering. EnKF 

stores, propagates, and updates the ensemble of vectors that approximates the state 

distribution.

• EnKF uses a collection of state vectors to represent the distribution of the system state 

and replace the covariance matrix by the sample covariance computed from the 

ensemble.

Notations: X, sampled ensemble; f, process model;   w, Gaussian white noise of 

process; x, process states;  P, state covariance; K, Kalman gain; H, measurement 

function;   R, measurement noise covariance;   z, measurement; v, Gaussian white noise 
of measurement

❖ Whilst some of the existing mechanistic models linking the metabolites with NSDs are highly accurate2, 3, 4, they are usually specifically designed for the system and require extensive 

reparameterization for a slight change in experimental condition. 

Existing Approach 

Ensemble Kalman Filter Algorithm    

• The metabolites are corrected by the experimental measurements and are closer to the 

true value than either the model or the measurement alone.

• NSDs are successfully estimated for both the control and feeding experiments, with 

filtered results converge to the true value as time evolves. 

• The EnKF is able to capture the feeding event and reflected on UDP-Gal (NSD).

• EnKF unfolds the possibility of acquiring accurate intracellular NSD information in a more 

general approach, reducing extensive laboratory work or re-parametrization of the model.

• The versatility of EnKF could be further exploited with more accessible NSD information, 

bridging the gap between the extracellular metabolites and the antibody quality attributes, 

and setting the groundwork for in silico glycan optimization of recombinant proteins. 
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Initialisation X0 ~ N(x0 , σ0
2)

Propagation

Process Model Prediction Step

Measurements ~ N(zk , σz
2) ?

𝑧𝑘,𝑖 = 𝐻(𝑥𝑘) + 𝑣𝑖 Assimilation

Initialisation (time 𝑘 = 0) of ensemble X0 ~ N(x0 , σ0
2)  for each metabolite and NSD initial conditions.

Measurement Update Step

10mM GAL & 5mM URD FED ON DAY 4 and 8
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