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Achievements of Machine Learning in Numerical weather forecast
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AIFS: data-driven model



Principle of a data-driven model
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schemes

Physical-based model:

Data-driven model:
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observations



Example of a full data-driven model (emulator)

Simple emulator of a quasi-geostrophic model (low-
complexity system)

In collaboration with
Yue (Michael) Ying

Training is simple to setup, but…
Blurring effect
Also (not shown): instability on long run

Kochov et al. 2023

HRES: hours of computa2on 
with hundreds of CPU
GraphCast: < 1 min on a single 
Google TPU



What does it have to do with data assimilation?
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Numerical model Forecast

DA update



Benefits for EnKF and 4dVar
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FengWu 4DVar, Xiao et al., 2023
Durand et al. 2024, 

h9ps://zenodo.org/records/11636139

See Eliott Lumet’s talk



Illustration

Physics-based model Data-driven model

Twin experiment setup: physics-based 
model is used to produce observations

synthe)c
observa)ons

Physics-based analysis ML-based analysis

EnKF EnKF

$$$$
~30 sec CPU

$
~3 sec CPU

Experiment implemented using 
Keras and NEDAS (~2 weeks)

hHps://github.com/nansencenter/NEDAS/tree/develop



Results

Comment:

ü Physics-based model is perfect (no 
model error)

ü Due to blurring, more inflation is 
needed in the ML-base experiment 
to maintain the spread

Physics-based
ML-based

Physics-based
ML-based

Ensemble size Forecast cost 
(unit: physics-based ensemble size)

Y. Ying

DA with emulators can be 
beneficial in case of limited 
computational resources



How to overcome this underes1ma1on of spread (i.e. blurring)?

Idea #1
Hybrid models

Idea #2
Generative models 



Dynamical models and Machine learning

𝑥 𝑡 𝑥 𝑡 + 𝑑𝑡
Physics-based model

$$$$$

Cheap component
Low-resolution core

expensive component
high-resolution core

𝑥 𝑡 𝑥 𝑡 + 𝑑𝑡
Full data-driven

$ 𝑥 𝑡 𝑥 𝑡 + 𝑑𝑡
Hybrid-model

$$

Physics-based component Data-driven component

$$$$



Example of an hybrid model

No smoothing
Stable on long lead time

LR model HR physical model Hybrid model

Neural GCM
Kochov et al. 2023



SuperResolution data assimilation
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Expensive high-res 
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Barthélémy et al., 2022



Performance of Super-Resolution data assimilation (SRDA)

No interpolation No interpolation

Using a high-resolution model

Using a low-resolution model

Error reduction Vs 
simple 
interpolation

Compu)ng cost 
reduc)on Vs high-
resolu)on model

Barthélémy et al., 2022



Full data-driven Vs hybrid models

Full data-driven Hybrid model

Stability Can be unstable on long 
run

Generally stable

Implementation Simple (full GPU) Challenging (coupling GPU 
and CPU processes)

Training Simple to setup but need 
a lot of data

Need the gradient of the 
physical model, need less 
data

Generalization Possible in a stationary 
setting

Benefit from the 
generalizatiom of the 
phyics-based part

Long-term run Can be unstable stable

realism Blurring effect (can be 
overcome with generative 
machine learning)

Limited blurring effect



One step further
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See J.C. van der Voort’s talk

Barthélémy et al., 2024 (preprint)



Results

Barthélémy et al., 2024 (preprint)

7 physics-based members

56 ML hybrid-based members

43 members
3 physics-based & 40 ML  

For the same cost, it is 
beneficial to mix physics-
based and data-driven 
forecasts



How to overcome this underestimation of spread (i.e. blurring)?

Idea #1
Hybrid models

Idea #2
Generative models



Two types of data-driven models

Data-driven 
model

Deterministic model Genera0ve/stochas0c model

𝑥 𝑡 𝑥 𝑡 + 𝑑𝑡

One input → One output
Training is stable and converges quickly 
Minimize the root-mean-square error
Does not provide an uncertainty estimate
Blurred outputs

One input → A ensemble/distribu'on
Training is more challenging and needs more data 
ValidaAon metrics are mulAple
Provides an uncertainty esAmate
RealisAc outputs Extreme events

Data-driven 
model

X 𝑡 + 𝑑𝑡

𝑥 𝑡

Random process



Generative model

Gencast, Price et al., 2024



SuperIce

Generative 
diffusion model

concentration thickness deformation mask



Principle of diffusion models

Noising procedure

Denoising procedure



Super-resolution

Increase the resolution of SIT 
(Sea Ice Thickness)

Use of diffusion model
Example 26 Jan 2016 

True image

Preserva'on of most of the small 
scales



End to end?
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End-2-end approaches
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Forecast/analysis

observations End-2-end model



End-2-end?

Examples of End-2-end approaches

üLimited to well-observed variables
üLimited to the observed spa?al and temporal resolu?on
üIs there enough data to learn the mul?variate complex rela?onship without the 

constraint of a physical model?

üSpecific variables of interests
ü e.g. precipitation: MetNet, Sønderby et al. 2020
ü Sea ice: Kvanum et al., 2023
üFirst attempts for weather forecast
ü e.g. Aardvark Weather, Vaughan et al. 2024
ü Lessig et al. 2024



Take home message

•Machine learning can help producing data-driven models that can 
be a compu2ng-efficient alterna2ve of physical models in a data 
assimila2on framework

•Determinis6c data-driven models can display problems of stability, 
accuracy, and blurring that could limit their use.

•Hybrid-model and/or Genera6ve models are a promising way to 
overcome the problems of determinis6c data-driven models

•For specific cases, end-2-end approaches can also be a op2on.

Julien.brajard@nersc.no
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