The interplay between data assimilation and artificial intelligence

Julien Brajard–Julien.brajard@nersc.no

Contributors: Yue (Michael) Ying, Laurent Bertino, Leo Edel, Anton Korosov, Zikang He, Fabio Mangini,

Integrated Forecasting System

Courtesy of Stephan Rasp

ISDA online webinar, Jan. 2024

Achievements of Machine Learning in Numerical weather forecast

AIFS: data-driven model

Principle of a data-driven model

Physical-based model:

Example of a full data-driven model (emulator)

What does it have to do with data assimilation?

Courtesy of Stephan Rasp

ISDA online webinar, Jan. 2024

Benefits for EnKF and 4dVar

Illustration

Results

DA with emulators can be beneficial in case of limited computational resources

- ✓ Physics-based model is perfect (no model error)
- Due to blurring, more inflation is needed in the ML-base experiment to maintain the spread

How to overcome this underestimation of spread (i.e. blurring)?

Dynamical models and Machine learning

Example of an hybrid model

SuperResolution data assimilation

Performance of Super-Resolution data assimilation (SRDA)

Using a high-resolution model

Using a low-resolution model

Full data-driven Vs hybrid models

	Full data-driven	Hybrid model
Stability	Can be unstable on long run	Generally stable

One step further

Results

Barthélémy et al., 2024 (preprint)

How to overcome this underestimation of spread (i.e. blurring)?

Two types of data-driven models

Deterministic model

One input \rightarrow One output

- 🕑 Training is stable and converges quickly
- 🕑 Minimize the root-mean-square error
- 😔 Does not provide an uncertainty estimate
- 😔 Blurred outputs

Generative/stochastic model

One input \rightarrow A ensemble/distribution

- Training is more challenging and needs more data
- 😒 Validation metrics are multiple
- 🕑 Provides an uncertainty estimate
- 🕑 Realistic outputs

Generative model

Gencast, Price et al., 2024

SuperIce

Principle of diffusion models

Noising procedure

Denoising procedure

Super-resolution

Increase the resolution of SIT (Sea Ice Thickness)

Use of diffusion model Example 26 Jan 2016

Preservation of most of the small scales

End to end?

End-2-end approaches

End-2-end?

- Limited to well-observed variables
- Limited to the observed spatial and temporal resolution
- ✓ Is there enough data to learn the multivariate complex relationship without the constraint of a physical model?

Examples of End-2-end approaches

- ✓ Specific variables of interests
- e.g. precipitation: MetNet, Sønderby et al. 2020
- ✓ Sea ice: Kvanum et al., 2023
- ✓ First attempts for weather forecast
- ✓ e.g. Aardvark Weather, *Vaughan et al. 2024*
- ✓ Lessig et al. 2024

- Machine learning can help producing data-driven models that can be a computing-efficient alternative of physical models in a data assimilation framework
- Deterministic data-driven models can display problems of stability, accuracy, and blurring that could limit their use.
- •Hybrid-model and/or Generative models are a promising way to overcome the problems of deterministic data-driven models
- For specific cases, end-2-end approaches can also be a option.

Julien.brajard@nersc.no

References

- V Durand, 2024 Four-dimensional variational data assimilation with a sea-ice thickness emulator, <u>https://zenodo.org/records/11636139</u>
- Lam, 2023, GraphCast: Learning skillful medium-range global weather forecasting, <u>https://arxiv.org/abs/2212.12794</u>
- Rasp, 2024, The second revolution in numerical weather prediction and its implications for data assimilation, <u>https://www.youtube.com/watch?v=CoiVfwJU4TY</u>
- Xiao, 2023, FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation, <u>https://arxiv.org/abs/2312.12455</u>
- ✓ Ying, 2024, NEDAS package, <u>https://github.com/nansencenter/NEDAS/tree/develop</u>
- Barthélémy, S., Brajard, J., Bertino, L. and Counillon, F., 2022. Super-resolution data assimilation. Ocean Dynamics, 72(8), pp.661-678. <u>https://link.springer.com/article/10.1007/s10236-022-01523-x</u>
- Kochov et al. 2023, Neural General Circulation Models for Weather and Climate, <u>https://arxiv.org/abs/2311.07222</u>
- Barthélémy, S., Counillon, F., Brajard, J. and Bertino, L., 2024. Hybrid covariance super-resolution data assimilation. <u>https://www.researchsquare.com/article/rs-4454996/latest</u>
- Price et al. 2023, Gencast: Diffusion-based ensemble forecasting for medium-range weather, <u>https://arxiv.org/abs/2312.15796</u>
- Brajard et al. 2024, Super-resolution of satellite observations of sea ice thickness using diffusion models and physical modeling., <u>https://nansencenter.github.io/superice-nersc/assets/slides_and_posters/PICO_superice_2-Belgrade.pdf</u>