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Achievements of Machine Learning in Numerical weather forecast
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Principle of a data-driven model

Physical-based model:

Physical principles / equations: 4 N
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Example of a full data-driven model (emulator)

Simple emulator of a quasi-geostrophic model (low-
complexity system)

t=0
physical emulator error

Training is simple to setup, but... In collaboration with
Blurring effect Yue (Michael) Ying

Also (not shown): instability on long run

NERSC

ERA5 (0.25°) ECMWF-HRES (0.1°) )  GraphCast (0.25°)

D Tropical cyclone Kochov et al. 2023

Atmospheric river

Intertropical
convergence zone

HRES: hours of computation
with hundreds of CPU
GraphCast: < 1 min on a single
Google TPU

Specific humidity at 700 hPa [g/kg]



What does it have to do with data assimilation?
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Benefits for EnKF and 4dVar
Ensemble Kalman Filter %observations
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4Dvar % observations
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f Analysis FengWu 4DVar, Xiao et al., 2023

Durand et al. 2024,

External loop (M times
P ) https://zenodo.org/records/11636139



lllustration

Twin experiment setup: physics-based
model is used to produce observations
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Keras and NEDAS (~2 weeks)
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Results
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NERSC

DA with emulators can be
beneficial in case of limited
computational resources

Comment:

4 Physics-based model is perfect (no
model error)

v Due to blurring, more inflation is
needed in the ML-base experiment
to maintain the spread

Y. Ying



How to overcome this underestimation of spread (i.e. blurring)?

Idea #1 |dea #2
Hybrid models Generative models




Dynamical models and Machine learning

Cheap component
Low-resolution core

expensive component
high-resolution core

Phvsics-based model
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Example of an hybrid model NERSC

(a) ERA5 (0.25°) ECMWEF-HRES (0.1°) NeuralGCM-0.7° )  GraphCast (0.25°)

time=0

+1 day

LR model HR physical model Hybrid model

+5 day

D Tropical cyclone Neural GCM
l:l Atmospheric river Kochov et al. 2023
Intertropical

convergence zone

No smoothing
Stable on long lead time

Specific humidity at 700 hPa [g/kg]



SuperResolution data assimilation

Super-resolution data assimilation

% observations
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Performance of Super-Resolution data assimilation (SRDA)

RMSE

- Using a high-resolution model
- Using a low-resolution model
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Fu

| data-driven Vs hybrid models

Stability Can be unstable on long
run

Generally stable




One step further

Mixed- ensemble Super-resolution %
. . . observations
data assimilation l
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Results

EnKF
SRDA
Hybrid SRDA
MRDA

BRE

7 physics-based members

56 ML hybrid-based members

43 members
3 physics-based & 40 ML

For the same cost, it is
beneficial to mix physics-

based and data-driven ' . . : : : :
forecasts 5 7 o 11 13 15

HR computational resources

Barthélémy et al., 2024 (preprint)



How to overcome this underestimation of spread (i.e. blurring)?

Idea #1 |dea #2
Hybrid models Generative models




Two types of data-driven models

Deterministic model

NV . N
~)- Data-driven B g
C)‘ model /Q\

x(t) x(t + dt)

One input - One output
Training is stable and converges quickly
Minimize the root-mean-square error

() Does not provide an uncertainty estimate
() Blurred outputs

Generative/stochastic model

andom process s
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One input - A ensemble/distribution
() Training is more challenging and needs more data

(=) Validation metrics are multiple
Provides an uncertainty estimate
» Extreme events

Realistic outputs



Generative model

Forecast from

GenCast forecasts for Typhoon Hagibis
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Principle of diffusion models

Noising procedure
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Super-resolution

Increase the resolution of SIT
(Sea Ice Thickness)

Use of diffusion model
Example 26 Jan 2016

Preservation of most of the small
scales
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End to end?

Ensemble Kalman Filter (with data-driven %Obsewaﬁons
model) |
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Forecast step

Data-driven $

Data-driven $

End-2-end approaches
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Analysis
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Forecast/analysis



End-2-end?

v/ Limited to well-observed variables
v/ Limited to the observed spatial and temporal resolution

v Is there enough data to learn the multivariate complex relationship without the
constraint of a physical model?

Examples of End-2-end approaches
\/Specific variables of interests
v’ e.g. precipitation: MetNet, Sgnderby et al. 2020
v Seaice: Kvanum et al., 2023

v/ First attempts for weather forecast
v’ e.g. Aardvark Weather, Vaughan et al. 2024
v’ Lessig et al. 2024



Take home message

*Machine learning can help producing data-driven models that can

be a computing-efficient alternative of physical models in a data
assimilation framework

*Deterministic data-driven models can display problems of stability,
accuracy, and blurring that could limit their use.

*Hybrid-model and/or Generative models are a promising way to
overcome the problems of deterministic data-driven models

*For specific cases, end-2-end approaches can also be a option.

Julien.brajard@nersc.no
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