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The focus has been on designing scalable mathematical models exploiting space-and-time par-

allelism (DD - PINT Framework) by introducing decomposition from the beginning of the math-

stack.

PINT-DD FRAMEWORK: a two level decomposition
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Figure 1. Two Level Domain Decomposition

Reduced Model
In Time:Similarly to PinT methods, we use DA as coarse predictor for the local PDE-based model, providing

the initial approximations needed for locally solving the initial value problems on each time subinterval,

whereas the PDE model serves as a fine corrector, on each time interval, iteratively improving the

prediction.

In Space: Similarily to Additive Schwarz methods we use the approximation of the numerical solution

computed on the interfaces between adjacent spatial subdomains as boundary conditions of local

PDE-models. Local communications along the overlapping regions allow to calculate local solutions that

connect each other ensuring smoothness and uniqueness of the global solution (information bridge)

Regularized DA operator:
Starting from the reduced functional, which is obtained by simply applying the restriction operator, we add

a regularization constraint. This regularization is introduced to enforce the continuity of each solution of the

local problem along the overlapping region between adjacent subdomains.

• Initial conditions: u(0)=u0

• Boundary conditions: u(t)=f on 𝜕Ω
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• Boundary conditions:ቐ
𝑢𝑖,𝑘 = 𝑓 𝑜𝑛෫𝜕Ω1 ≡ 𝜕Ω𝑖 \ Γ𝑖𝑗𝑖

𝑢𝑖,𝑘 = 𝑢𝑖𝑗,𝑘 𝑜𝑛 Γ𝑖𝑗 𝑖 .
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DD-KF: local computational scheme on two spatial subdomains
(Ωi and Ωj) for each time subinterval ∆s (∆ = ⋃

s=1,L ∆s)

Predictor phase. Computation of local estimates:

xi,k+1 = Mix̂i,k + bk|Ωi
+ bi,k ; (1)

where bi,k is the contribution of xj,k restricted to ∂Ωi ∩ Ωj (according to the Additive Schwarz

Method) while, as initial value, we consider the estimate computed at the previous step in the

adjacent time sub interval x
∆j

i,k+1 = x
∆j−1
i,k+1.

Pi = MiPiM
T
i + PΩi↔Ωj

+ Qi,k , (2)

where
PΩi↔Ωj

= Mi,jPj,iM
T
i + MiPj,iM

T
i,j + Mi,jPjM

T
i,j

Pi,j = MiPi,jM
T
j + CΩi↔Ωj

CΩi↔Ωj
= MiPiM

T
j,i + Mi,jPj,iM

T
j,i + Mi,jPjM

T
j

, (3)

Corrector phase.

Ki = (PiHk+1|TΩi
+ Pi,jHk+1|TΩj

) · F ; (4)

where
F = (Hk+1|Ωi

PiHk+1|TΩi
+ Hk+1|Ωj

PjHk+1|TΩj
+ Ri,j + Rk+1)−1

Ri,j = (Hk+1|Ωj
Pj,iHk+1|TΩi

+ Hk+1|Ωi
Pi,jHk+1|TΩj

)
Pi = (I − KiHk+1|Ωi

)Pi − KiHk+1|Ωj
Pj,i

; (5)

update local estimate of covariance matrices

Pi,j = (I − KiHk+1|Ωi
)Pi,j − KiHk+1|Ωj

Pj . (6)

Update DD-KF estimates:

x̂i,k+1 = xi,k+1 + Ki

[
yk+1 − (Hk+1|Ωi

xi,k+1 + Hk+1|Ωj
xj,k+1)

]
+ . . . . . . . (7)

Some results to the initial boundary problem of SWEs.....

min time overlap time overlap (Ω1) SWE sol (t fixed) (Ω1)

max space overlap time overlap (Ω2) SWE sol (t fixed) (Ω2)

The local concurrent algorithm in ∆s × (Ωi, Ωj)
for k = 1, klocal %loop over (local) time steps in ∆s

Define predicted covariance matrices: Pi,i, Pj,i
Compute Kalman gains: Ki,i, Kj,i
Update covariance matrices: Pi,i, Pj,i

repeat % ASM loop over n
Send and Receive data values among adjacent sets

Compute Kalman estimate

x̂n+1
i,k = xn

i,k + Ki,k

[
(yk − Hk|Ωj

xn
j,k) − Hk|Ωi

xn
i,k

]
+ β Oi,j(x̂n

i,k|Ωi,j
, x̂n

j,k|Ωi,j
)︸ ︷︷ ︸

joint cond in space

until ‖x̂n+1
i,k − x̂n

j,k‖ < TOL

Send and Receive data values among adjacent sets

Update Kalman estimate x̂n+1
i,k = x̂n+1

i,k + α Ri,j(x̂n
i,k, x̂n

j,k−1)︸ ︷︷ ︸
joint cond in time

endfor

1. communications along the overlapping regions allow to calculate local solutions that

connect each other ensuring smoothness, uniqueness of the global solution and the

propagation of local information along the sub domains in order to face with the issues of

information transfer of non local observations

2. following a predictor-corrector approach, we initially use DA background values as coarse

predictor for the initial conditions in each subinterval, then iteratively, the model itself

serves as fine correction

3. localization is implemented by multiplying the sample covariance between observation and

model state priors and the sample covariance between observation and observation priors

by a distance-dependent function (Houtekamer and Mitchell 2001; Hamill et al. 2001),

which is called observation space localization. By using the forward error analysis (FEA), we

derive the number of conditions of DD-DA. We find that DD-DA actually reduces the

number of conditions of DA, revealing that it is much more appropriate than the standard

approach that is usually implemented in most operative software;

4. in order to facilitate shared/distributed communication we assign nearby domains that

communicate often to shared memory. this is why DD in space is implemented at the finest

level.

Future work

DD-KF could be applied to EnKF by changing the filter, as it is performed in DD-KF. Specifically,

in order to enforce the matching of local solutions on adjacent regions, local problems should

be slightlymodified by adding the smoothness-regularization constraint to the correction phase

on local solutions; such term keeps track of contributions of adjacent domains to ensembles

regions. The same modification should be done on the covariance matrices.
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