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Offline model error correction ML for numerical weather prediction

Machine learning for NWP with dense and perfect observationsMachine learning for NWP with dense and perfect observations

▶ A typical (supervised) machine learning problem: given observations yk of a system, derive a surrogate model of that
system.

J (p) =
Nt∑

k=1

∥∥yk+1 −M(p, yk)
∥∥2

.

▶ M depends on a set of coefficients p (e.g., the weights and biases of a neural network).
▶ This requires dense and perfect observations of the system. In NWP, observations are usually sparse and noisy : we

need data assimilation!
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Offline model error correction ML for numerical weather prediction

Machine learning for NWP with sparse and noisy observationsMachine learning for NWP with sparse and noisy observations

▶ A rigorous Bayesian formalism for this problem1:

J (p, x0, . . . , xNt ) =
1
2

Nt∑
k=0

∥∥yk −Hk(xk)
∥∥2

R−1
k

+
1
2

Nt−1∑
k=0

∥∥xk+1 −M(p, xk)
∥∥2

Q−1
k

.

▶ This resembles a typical weak-constraint 4D-Var cost function!

▶ DA is used to estimate the state and then ML is used to estimate the model.

(x?,p?)

y

Initialisation

fix p

DA step

min. over x

ML step

min. over p

pi
xa

pa

1Bocquet et al. (2019, 2020), Brajard et al. (2020)
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Offline model error correction ML for numerical weather prediction

Machine learning for model error correctionMachine learning for model error correction

▶ Even though NWP models are not perfect, they are already quite good!
▶ Instead of building a surrogate model from scratch, we use the DA-ML framework to build a hybrid surrogate model,

with a physical part and a statistical part2.

Physical model

Statistical model

Hybrid model

▶ In practice, the statistical part is trained to learn the error of the physical model.
▶ In general, it is easier to train a correction model than a full model: we can use smaller NNs and less training data.

2Farchi et al. (2021), Brajard et al. (2021)
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Offline model error correction ML for numerical weather prediction

Typical architecture of a physical modelTypical architecture of a physical model

▶ The model is defined by a set of ODEs or PDEs which define the tendencies:

∂x
∂t

= ϕ(x). (1)

▶ A numerical scheme is used to integrate the tendencies from time t to t + δt (e.g., Runge–Kutta):

x(t + δt) = I
(

x(t)
)
. (2)

▶ Several integration steps are composed to define the resolvent from one analysis (or window) to the next:

M : xk 7→ xk+1 = I ◦ · · · ◦ I(xk) (3)

Resolvent correction

▶ Physical model and of NN are independent.
▶ NN must predict the analysis increments.
▶ Resulting hybrid model not suited for short-term predictions.
▶ For DA, need to assume linear growth of errors in time to

rescale correction.

Tendency correction

▶ Physical model and NN are entangled .
▶ Need the adjoint of the physical model to train the NN!
▶ Resulting hybrid model suited for any prediction.
▶ Can be used as is for DA.
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Offline model error correction Illustration with the two-scale Lorenz system

Illustration with the two-scale Lorenz system: setupIllustration with the two-scale Lorenz system: setup

▶ True model: 2-scale Lorenz (2005-III) system with 36 slow variables and 360 fast variables.
▶ Physical model (to correct): 1-scale Lorenz (1996) system with 36 variables.

Sources of model error
▶ the fast variables are not represented;
▶ the integration step is 0.05 instead of 0.005;
▶ (the forcing constant is 8 instead of 10).
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Offline model error correction Illustration with the two-scale Lorenz system

Illustration with the two-scale Lorenz system: resultsIllustration with the two-scale Lorenz system: results

▶ Noisy observations are assimilated using strong-constrained 4D-Var .
▶ Simple CNNs are trained using the 4D-Var analysis dataset to correct model errors.

0 2 4 6 8 10
Time (Lyapunov unit)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

no
rm

al
is

ed
 R

M
SE

original model
resolvent correction
tendency correction

Model Analysis RMSE

Original model 0.31
Resolvent correction 0.28
Tendency correction 0.24
True model 0.22

▶ The TC is more accurate than the RC, even with smaller NNs and less training data.
▶ The TC benefits from the interaction with the physical model.
▶ The RC is highly penalised (in DA) by the assumption of linear growth of errors.
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From offline to online model error correction
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From offline to online model error correction NN formulation of WC 4D-Var

Merging DA and ML for online model error correctionMerging DA and ML for online model error correction

▶ So far, the model error has been learnt offline: the NN is trained only once the entire analysis dataset is available.

(x?,p?)

y

Initialisation

fix p

DA step

min. over x

ML step

min. over p

pi
xa

pa

▶ We now investigate the possibility to make online learning, i.e. improving the NN as new observations become
available.

▶ In practice, we propose to merge the DA and ML steps: we want to use the formalism of DA to estimate both the
state and the NN parameters at the same time.
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From offline to online model error correction NN formulation of WC 4D-Var

A neural network formulation of weak-constraint 4D-VarA neural network formulation of weak-constraint 4D-Var

▶ Taking inspiration from weak-constraint 4D-Var , we propose to use the following DA cost function:

J (p, x0) =
1
2

∥∥x0 − xb
0
∥∥2

B−1 +
1
2

∥∥p− pb
∥∥2

P−1 +
1
2

L∑
k=0

∥∥yk −Hk ◦Mk:0(p, x0)
∥∥2

R−1
k

.

▶ The parameters p (e.g., NN weights and biases) are assumed constant over the DA window.
▶ Information is flowing from one window to the next using the prior xb

0 and pb.

▶ This approach is very similar to classical parameter estimation in DA, and it can be seen as a NN formulation of
weak-constraint 4D-Var.

▶ This has been already done in an EnKF context3.

3Bocquet et al. (2020)
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From offline to online model error correction Illustration with the two-scale Lorenz system

Illustration with the two-scale Lorenz systemIllustration with the two-scale Lorenz system

▶ We use the tendency correction approach, with the same simple CNN as before.
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▶ The online correction steadily improves the model.
▶ At some point, the online correction gets more accurate than the offline correction.
▶ Eventually, the improvement saturates. The analysis error is similar to that obtained with the true model!
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From offline to online model error correction Simplified NN 4D-Var

Weak-constraint 4D-Var: the forcing formulationWeak-constraint 4D-Var: the forcing formulation

▶ The idea of weak-constraint 4D-Var is to relax the perfect model assumption.
▶ The price to pay is a huge increase in problem dimensionality.
▶ This can be mitigated by making additional assumption, e.g. the model error w is constant over the DA window:

xk+1 = Mϕ
k+1:k (xk) + w ≜ Mwc

k+1:0 (w, x0) .

▶ The DA cost function can hence be written

J (w,x0) =
1
2

∥∥x0 − xb
0

∥∥2

B−1 +
1
2

∥∥w − wb
∥∥2

Q−1 +
1
2

L∑
k=0

∥∥yk − Hk ◦ Mwc
k:0 (w,x0)

∥∥2

R−1
k

.

▶ This is called forcing formulation of weak-constraint 4D-Var. This is the weak-constraint 4D-Var currently
implemented in OOPS (the ECMWF data assimilation system).
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From offline to online model error correction Simplified NN 4D-Var

A simplified NN 4D-Var built on top of WC 4D-VarA simplified NN 4D-Var built on top of WC 4D-Var

▶ In order to merge the two approaches, we consider the case where the constant model error w is estimated using a
neural network F :

Mk+1:k (p, xk) = Mϕ
k+1:k (xk) + w, w = F (p, x0) .

▶ This means that the model evolution can be written

Mk:0 (p, x0) = Mwc
k:0 (F (p, x0) , x0) .

▶ As a consequence, it will be possible to build this simplified method on top of the currently implemented
weak-constraint 4D-Var, in the incremental assimilation framework (with inner and outer loops).
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From offline to online model error correction Simplified NN 4D-Var

Gradient of the incremental cost functionGradient of the incremental cost function

Input: δp and δx0
1: δw← Fpδp + Fxδx0 ▷ TL of the NN F
2: z0 ← R−1

0 (H0δx0 − d0)
3: for k = 1 to L− 1 do
4: δxk ←Mk:k−1δxk−1 + δw ▷ TL of the dynamical model Mk:k−1
5: zk ← R−1

k
(Hkδxk − dk)

6: end for
7: δx̃L−1 ← 0 ▷ AD variable for system state
8: δw̃L−1 ← 0 ▷ AD variable for model error
9: for k = L− 1 to 1 do

10: δx̃k ← H⊤
k zk + δx̃k

11: δw̃k−1 ← δx̃k + δw̃k

12: δx̃k−1 ←M⊤
k:k−1δx̃k ▷ AD of the dynamical model Mk:k−1

13: end for
14: δx̃0 ← H⊤

0 z0 + δx̃0
15: δx̃0 ← [Fx]⊤ δx̃0 ▷ AD of the NN F
16: δp̃← [Fp]⊤ δw̃0 ▷ AD of the NN F
17: δx̃0 ← B−1

(
xi

0 − xb
0 + δx0

)
+ δx̃0

18: δp̃← P−1
(

pi − pb + δp
)

+ δp̃
Output: ∇δpĴ nn = δp̃ and ∇δx0 Ĵ nn = δx̃0
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From offline to online model error correction Simplified NN 4D-Var

Gradient of the incremental cost functionGradient of the incremental cost function

▶ In order to implement the simplified NN 4D-Var we can reuse most of the framework already in place for WC 4D-Var.
▶ A few new bricks need to be implemented:

▶ the forward operator F of the NN to compute the nonlinear trajectory at the start of each outer iteration;
▶ the tangent linear (TL) operators Fx and Fp of the NN;
▶ the adjoint (AD) operators [Fx]⊤ and [Fp]⊤ of the NN.

▶ These operators have to be computed in the model core (where the components of the state are available), which is
implemented in Fortran.

▶ To do so, we have implemented our own NN library in Fortran.

https://github.com/cerea-daml/fnn

▶ The FNN library has been interfaced and included in OOPS.
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From offline to online model error correction Illustration with a QG model

Illustration with a quasi-geostrophic model: the modelIllustration with a quasi-geostrophic model: the model

▶ Before using it in operational data assimilation, we would like to illustrate the method with a lower model.
▶ To do so, we use the QG model implemented in OOPS. This is a two-layer, two-dimensional quasi geostrophic model.
▶ The control vector contains all values of the stream function ψ for both levels for a total of 1600 variables.
▶ Model error is introduced by using a perturbed setup, in which layer depths and the integration time steps have been modified.
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From offline to online model error correction Illustration with a QG model

Illustration with a quasi-geostrophic model: NN architectureIllustration with a quasi-geostrophic model: NN architecture

▶ By construction, NN 4D-Var is very similar to parameter estimation, which is challenging when the number of
parameters is high.

▶ For this reason, it is important to use smart NN architectures to be parameter efficient.
▶ Taking inspiration from Bonavita & Laloyaux (2020) we use a vertical architecture, with only 386 parameters.
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From offline to online model error correction Illustration with a QG model

Online learning: first-guess and analysis errorsOnline learning: first-guess and analysis errors

0 32 64 96 128 160 192 224 256

Time in days

0.250

0.275

0.300

0.325

0.350

0.375

0.400

F
ir

st
-g

u
es

s
R

M
S

E

SC 4D-Var without correction

SC 4D-Var with NN trained offline

WC 4D-Var

NN 4D-Var (new variant)

0.12

0.13

0.14

0.15

0.16

0.17

0.18

A
n

a
ly

si
s

R
M

S
E

SC 4D-Var without correction

SC 4D-Var with NN trained offline

WC 4D-Var

NN 4D-Var (new variant)

▶ The NN is first trained offline (pre-training) then online using the new 4D-Var variant.
▶ As new observations become available, online learning steadily improves the model , resulting in more accurate first-guess and analysis.
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Application to the ECMWF forecasting system
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Application to the ECMWF forecasting system Experimental setup

Experiments with the IFSExperiments with the IFS

▶ We want to develop a model error correction for the operational IFS.
▶ Following the QG experiments, we use a two-step process:

▶ offline learning to screen potential architectures and pre-train the NN
▶ online learning: data assimilation and forecast experiments

▶ Offline experiments rely on preliminary work by Bonavita & Laloyaux (2020), using the operational analyses produced
by ECMWF between 2017 and 2021.

▶ The NN is trained to predict the analysis increments, which are available every 12 hours.

▶ Training / validation split:
▶ training from 2017-01-01 to 2020-10-01 (IFS cycles 43R1 to 47R1);
▶ validation from 2020-10-01 to 2021-10-01 (IFS cycles 47R1 to 47R2).

Alban Farchi Model error correction with DA and ML 18 June 2024 21 / 30



Application to the ECMWF forecasting system Experimental setup

Focus on large-scale model errorsFocus on large-scale model errors

▶ Focus on large-scale model errors: we use the data at a low spectral resolution (T15), interpolated in Gaussian grid
with 16× 31 nodes.

Input Output
Analysis at t0 Analysis increment at t0 + 12h

240 260 280 300
temperature, level 137 (K)

2 1 0 1 2
temperature, level 137 (K)
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Application to the ECMWF forecasting system Experimental setup

Neural network architectureNeural network architecture

▶ We compute a correction for 4 variables in the same NN: temperature (t), logarithm of surface pressure (lnsp), vorticity (vo) and
divergence (d).

▶ We keep the same vertical architecture as in Bonavita & Laloyaux (2020).

Analysis at t0

Single column

Increment at t0 + 12h

Single column

...

...

...

...
...

...

...

...

...

t

lnsp

vo

d

date

time

lat

lon

t

lnsp

vo

d

▶ The NN can be used with any grid.
▶ The number of parameters is

relatively small (approx. 1M)
compared to the dimension of the
control vector and to the size of the
training dataset (approx. 700M).

▶ Spatial information is partially lost.
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Application to the ECMWF forecasting system Experimental setup

Offline performance of the NNOffline performance of the NN

Test MSE (relative)
Model t lnsp vo d

No correction 1.000 1.000 1.000 1.000
Trained NN 0.760 0.759 0.898 0.919

▶ Overall, the NN predicts approximately 15% of the analysis
increments.

▶ The increments for tlnsp are more predictable than for vod .

▶ The increments are more predictable in summer than in winter.
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Application to the ECMWF forecasting system Experimental setup

Offline performance of the NNOffline performance of the NN
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▶ The NN is most accurate close to the surface.
▶ The estimations deteriorate between 10 and 100 hPa, where weak constraint

4D-Var is active in the test set.

▶ The estimations are more accurate at larger scales.
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Application to the ECMWF forecasting system Experimental setup

Second step: data assimilation experimentsSecond step: data assimilation experiments

▶ The trained NN is inserted into the IFS, in a standard research configuration:
▶ 12h assimilation window;
▶ Latest IFS cycle 48R1;
▶ Resolution of the nonlinear model: TCo399;
▶ Resolution of the inner loops: TL95, TL159, TL255.

▶ Three-month experiment in summer 2022 (outside the offline training and test set).

▶ First test series without online learning .
This is equivalent to using strong-constraint 4D-Var with the corrected model.

▶ Second test series with online learning .
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Application to the ECMWF forecasting system Experimental setup

Data assimilation experiments without online trainingData assimilation experiments without online training

▶ Comparison to the operational analysis.
▶ Baseline: standard weak-constraint 4D-Var by Laloyaux et al. (2020).

▶ Significantly reduced errors above 100 hPa, especially at long lead time.
▶ Below 100 hPa, the performance in the tropics is degraded.

▶ For Z500, we see a RMSE reduction of 1 % to 2 %.
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Application to the ECMWF forecasting system Experimental setup

Data assimilation experiments with online trainingData assimilation experiments with online training

▶ Comparison to the operational analysis.
▶ Baseline: experiment without online training.

▶ Significantly reduced the errors in the stratosphere.
▶ Especially in the northern hemisphere for temperature and in the tropics

for vector winds.
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Application to the ECMWF forecasting system Experimental setup

Data assimilation experiments with online trainingData assimilation experiments with online training

▶ Comparison to independent observations.

▶ Overall, the impact on forecast RMSE of all variables is positive in the
northern hemisphere and in the tropics.

▶ Relatively modest impact in the southern hemisphere except in the
stratosphere.

▶ On the downside, some score are slightly degraded, e.g. temperature at
850 hPa.

Online - Reference Online - Offline
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Application to the ECMWF forecasting system Experimental setup

ConclusionsConclusions

▶ We have developed a new variant of weak-constraint 4D-Var to perform an online, joint estimation of the system state
and NN parameters.

▶ The new variant is built on top of the existing weak-constraint 4D-Var, in the incremental assimilation framework.
▶ The new variant is implemented in OOPS, using a newly developed NN library in Fortran (FNN).

▶ We are testing the method with the operational IFS.
▶ First results are promising.
▶ Upcoming challenges:

▶ training at higher resolution;
▶ develop a time-dependent correction within the window;
▶ improve the consistency between offline and online training.

▶ More details can be found in our preprint:

https://doi.org/10.48550/arXiv.2403.03702
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