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Convective/Storm scale application
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• High resolution NWP models of atmosphere that incorporate our
knowledge of the dynamics and physics.

• For modern geophysical models state vector is of size 106 − 108.
• Accurate initial conditions are crucial for prediction, even more in the

future due to climate change and intensification of the water cycle.



Convective/Storm scale application

Liquid

Ice

Rain

Snow

Graupel

Met3D

• High resolution NWP models of atmosphere that incorporate our
knowledge of the dynamics and physics.

• For modern geophysical models state vector is of size 106 − 108.

• Accurate initial conditions are crucial for prediction, even more in the
future due to climate change and intensification of the water cycle.



Convective/Storm scale application

Liquid

Ice

Rain

Snow

Graupel

Met3D

• High resolution NWP models of atmosphere that incorporate our
knowledge of the dynamics and physics.

• For modern geophysical models state vector is of size 106 − 108.
• Accurate initial conditions are crucial for prediction, even more in the

future due to climate change and intensification of the water cycle.



Convective/Storm Scale Data assimilation

• Problem is highly nonlinear and highly non-Gaussian.
• In addition to global observing system, radar is the primary new

observation.
• The state vector wb

k at time k consists in addition of prognostic
hydrometeors variables (rain, graupel, snow, ...) at all grid points.

• Depending on microphysical scheme in model, even higher
dimensional problem with third of the variables (one order of
magnitude) that need to be nonnegative.

• Uncertainty quantification is a challenge for both model and
observation error.
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Uncertainty of geophysical models
• Geophysical models of atmosphere incorporate our knowledge of the

dynamics and physics.

• These models are not perfect.
• One of the reasons for model error is limited knowledge of model

parameters.



Joint state and parameter estimation

Parameters are not observed

To learn parameters of a numerical model from observations
• Data assimilation
• Machine learning

Data assimilation:
Augment state vector x with parameters θ

wa
k =

[
xak
θak

]
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EnKF

Propagation step. Propagate the mean and the covariance with the
dynamics between observations. Prior to new observation we have wf

k

and its covariance Pf
k .

wf ,i
k =Mwa,i

k−1 + qi
k i = 1, . . .N

Pf
k =

1
N − 1

N∑
i=1

[wf ,i
k −wf

k ][w
f ,i
k −wf

k ]
T .

Kalman analysis.

wa,i
k = wf ,i

k + Kk(wo
k + r i −Hkwf

k),

Kk = Pf
kH

T
k (HkPf

kH
T
k + Rk)

−1

Pa
k = (I−KkHk)

TPf
k

Derived using qi ∼ N (0,Q), r i ∼ N (0,R), wf
0 ∼ N (0,Pf

0) and all
uncorrelated.



Augmented EnKF

Stochastic model for parameters

θf ,ik = θa,ik−1 + Dk−1C
1
2 ηi

θa,ik−1 is the raw analysis value after applying the EnKF

θf ,ik the perturbed value that is passed to the model

Dk−1 is a diagonal matrix that locally controls the ensemble spread

C
1
2 is the error correlation matrix that specifies the correlations within parameter field

ηi ∼ N (0, I ) is the random realization of the stochastic model.



Example

Can accounting for model error by allowing uncertainty in parameters
reduce state error?

• Parameter: roughness length (2D field)
• Operational atmospheric model
• All observations including volumes of radar reflectivity assimilated

with LETKF
• Stochastic model for roughness length

• with correlation length scale of either 0, 5, or 25 grid points
• at each grid point a temporally constant standard deviation of 25%

of the original roughness length parameter value
• we set za0t−1,i ← max

(
za0t−1,i , z

minb
0

)
before the dynamical model is

applied (non-negativity)

Ruckstuhl, Y. and T. Janjić, 2020, Combined State-Parameter Estimation with the LETKF for Convective-Scale

Weather Forecasting, Mon. Wea. Rev., 148, 1607–1628.
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Example

Precipitation FSS score in percentage with respect to ref

Accounting for model error by allowing uncertainty in parameters can
reduce state error.
Ruckstuhl, Y. and T. Janjić, 2020, Combined State-Parameter Estimation with the LETKF for Convective-Scale

Weather Forecasting, Mon. Wea. Rev., 148, 1607–1628.



Alternative Algorithms for joint estimation

For data assimilation
• Parameters updated through cross-correllations

Verification against visible Meteosat SEVIRI images (Scheck et al. 2016, 2018).
FSS thresholds 0.3 and 0.5 (Rusckstuhl and Janjic 2020).

• Sampling error and localization
• Stochastic models for parameters needed

Alternative algorithms ?
Non-Gaussian methods needed for parameter estimation?



Modified shallow water model

∂u

∂t
+ u

∂u

∂x
+
∂(φ+ γ2r)

∂x
= βu + Du

∂2u

∂x2 , φ =

{
φc if h > hc
gh otherwise,

∂r

∂t
+ u

∂r

∂x
= Dr

∂2r

∂x2 − αr −{
δ ∂u
∂x , if h > hrand

∂u
∂x < 0

0 otherwise,

∂h
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Wuersch and Craig 2014: A simple dynamical model of cumulus convection for data assimilation research.,

Meteorol. Z., 23, 483-490.



Non-Gaussian aspects

QPEns (Janjic et al 2014), QF (Hodyss 2011,2012), EnKF (Evensen 2003).

Ruckstuhl Y. and T. Janjic, 2018, Parameter and state estimation with ensemble Kalman filter based approaches

for convective scale data assimilation, Q. J. R. Meteorol. Soc., 144:712, 826–841.



NNs

(figure from Jospin et al. 2020)

Trained on 100 000 model simulations using random parameter values
from the uniform distributions.



NN accuracy

Output of NN (blue dots), BNN (red dots), and LR (green dots) against
corresponding ground truths and ideal output (black lines) of 500 samples



DA+NNs for parameters

Legler and Janjic, 2022: Combining data assimilation and machine learning to estimate parameters of a

convective-scale model. Q.J.R. Meteorol. Soc., 148, 860-874, https://doi.org/10.1002/qj.4235.



Time evolution of errors
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Offline training: BNN0, NNs; BNNt training continues online during DA



Statistical Properties
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Sensitivity to Ensemble Size
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Results are averaged over 100 individual experiments with different
ground truth values. True parameter is used in simulation (black), wrong
(gray).



LRP

We follow Toms et al. 2020 to calculate Layer-wise relevance propagation
(LRP) map for hr in case Left: 3 parameters are estimated simultaneously.
Right: LRP map when only hr is estimated.



Uncertainty quantification

Comparison of two ML methods (BNNs and random forest) for estimates
of a parameters and their uncertainty in a modified shallow water model
(Legler et al. 2022).



Conclusion

• Estimating parameters can reduce prediction errors

• If stochastic model for parameters can be made, EnKF can be used
to objectively estimate parameters from data

• Methods that take into account non-Gaussian aspects of parameter
estimation can further improve parameter estimates

• Alternatively, Bayesian neural networks and Bayesian approximations
of point estimate neural networks are able to estimate model
parameters and their relevant statistics

• ML is able to retrieve hidden relationships while DA can provide
data-sets for training/inference from sparse and noisy observations
(Brajard et al. 2020; Bonavita and Laloyaux 2020; Ruckstuhl et al. 2021, Farchi
et al. 2021)

• ML results are comparable, but not better than augmented data
assimilation estimation on our test case.


