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Context

Pollutant dispersion is involved in many applications related to safety/public
health (industrial accident, traffic air pollution, wildfire smoke)

¢ Focus on microscale dispersion in urban environments

¢ Large-eddy simulation (LES) modeling
@ Resolves the largest turbulence scales
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@ Explicitly accounts for the effect of urban buildings on the Lubrizol factory fire in Rouen in September 2019
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atmospheric flow and dispersion
@ Provides a spatio-temporal description of the phenomenon

& LES still has large uncertainty despite its substantial computational cost (Dauxois et al. 2021)

_[ General objective J

Implement a reduced-cost DA system to reduce
uncertainty in LES modeling of urban pollutant dispersion
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*»* Case study: LES of the MUST field campaign trial #2681829 (Yee and Biltoft. 2004)
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Uncertainty in LES microscale dispersion modeling

Epistemic
uncertainty

Aleatory
uncertainty

Microscale internal
variability of the AB

Focus on uncertainties related
to atmospheric conditions
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Approach
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+%* State estimation versus parameter estimation
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*Mons et al. 2017, Sousa et al. 2018, Sousa et Gorlé. 2019, Defforge et al. 2019, Defforge et al. 2021.
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% Control vector definition:

0= (ainlet: u*)
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Inlet wind direction Inlet wind friction velocity




Objectives

** Data assimilation system design

Background

Prior boundary
condition parameters

(Xiniet, Us)

LES dispersion
model

State prediction
Analysis

D i . Improved mean

. a-ta . Corrected BC LES dispersion P .
Assimilation ¢ del concentration

EnKF parameters mode state estimation

-

In-situ
measurements

o Epistemic uncertainty on boundary condition parameters: \/{

Mons et al. 2017, Sousa and Gorlé.
2019, Defforge et al. 2021

o Aleatory uncertainty associated with the internal variability: X

_[ Objective #1 |

)
Take account of aleatory uncertainty linked to internal variability in the
assimilation system




Objectives

» Effect of the internal variability of the ABL on the mean concentration predictions

» Estimation using stationary bootstrap of LES sub-averages (Lumet et al. 2024)

Tower Bat z=2m

T ‘ | Vertical profile at tower B
< L m I '*4 M — Simulation 71
A liln = Simulation #2
| = Simulation #3

Estimated internal variability




Objectives

¢ Data assimilation system design
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Assimilation Cor:erc‘:e:I BC —{ }—v concentration
EnKF parameters state estimation

In-situ

measurements

Issue: LES computational cost
1 prediction = 20 000 hp

_[ Objective #2 |

)
Build a surrogate model to reduce the cost of the DA system without
compromising the accuracy of its estimates
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| — Reduced-cost DA system

Construction of the surrogate model
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1) Computation of a dataset of 200 LES using Halton’s sequence to sample the control vector space
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The dataset is being put online in open access on Zenodo



| — Reduced-cost DA system
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» Construction of the surrogate model
2) Train a POD—GPR surrogate model (Marrel et al. 2015)

over 160 LES samples

» Dimension reduction step using Proper Orthogonal Decomposition (POD, a.k.a PCA)

» Learn the dependency of POD coefficients on the control vector using Gaussian Process Regression (GPR)

POD
coefficients

New input
parameters

0 = (ainier, Us)

Gaussian process #1

v

\ 4

Gaussian process #2

Concentration
field prediction

Gaussian process #L

\ 4

3) Validation against 40 independent LES test samples

» Surrogate error close to the minimal level of error reachable given the LES internal variability

Article presenting the validation of the surrogate model currently being submitted to Building and Environment
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| — Reduced-cost DA system

** Errors modeling for the MUST case

» What is the surrogate model error?
Background /

Prior boundary | ] State prediction

condition parameters J

Analysis
.Da.ta . Corrected BC
Assimilation arameters
EnKF P

[ SV ] In-situ

J measurements
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Reduced-cost DA system

** Taking into account model error

» During the EnKF prediction step:

f _ b .
Xy = Mp(80y), 1<i<N,

With M ;) a random sample from the POD—GPR distribution

-

-

» We show that the POD—GPR variance covers
o The regression error of each GP
o The aleatory uncertainty associated with internal variability

» This approach integrates the spatial correlations of the errors

20.0
17.51

15.01

—— POD-GPR mean prediction

POD-GPR uncertainty
(95% confidence interval)

--=-= POD-GPR prediction samples
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| — Reduced-cost DA system
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** Errors modeling for the MUST case

State prediction \/

Background Surrogate model error

Prior boundary W
condition parameters J

Analysis
.Da.ta . Corrected BC
Assimilation arameters
EnKF P

[ : | 1 In-situ

J measurements

\

> Which measurements do we assimilate?

» What is their uncertainty R?




| - Reduced-cost DA system

> Observation vector y° = {13 mean concentration measurements from 4 masts as in Defforge et al. 2021}
> Observation error €° = measurmeent-errer + internal variability error

» Observation error covariance matrix R = estimated using stationary bootstrap (Lumet et al. 2024)
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» We can also take into account for spatial correlations of observation errors }
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| — Reduced-cost DA system
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** Errors modeling for the MUST case

State prediction \/
Surrogate model error

Background

Prior boundary W
condition parameters J

Analysis
.Da.ta . Corrected BC
Assimilation arameters
EnKF P

)
_

Observations & B \/

7

> Background error covariance matrix B = Cov(e?(a;nt), €2 (u,)) estimated by a microclimatology

» Log anamorphosis for the friction velocity: i, = In(u, + u;)

! The hypothesis of a normally distributed error for the wind direction is rejected (& er €] — 7, )




| - Reduced-cost DA system

\/

» Compromise between accuracy and computational cost = | N, = 500

** Ensemble size selection using OSSEs

Vs

1 cycle with 500 surrogate members = 50 s (1 CPU)

1 cycle with 10 LES members = 200 000 CPU hours

» Using a surrogate model and large ensemble

also allows us to:

o Reduce sensitivity to background sampling

o Perform a large number of tests to optimize
the DA system and investigate its

sensitivities
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Analysis error averaged over
multiple background samples

Analysis error spread over
multiple background samples
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Il — Assimilation of the real field measurements

¢ Prior parameters
> 0P obtained by biasing the reference measurements 0"¢/ defined using the nearest meteorological
measurement masts (non-assimilated)
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Il — Assimilation of the real field measurements
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% Control vector estimation

0.050 1

df

=0.0251

0.000

Background ensemble
Background pdf
Analysis ensemble
Analysis pdf
Reference parameters

Vs

» The EnKF estimates very well a0+

» The analysis does not improve u,
estimation

» The analysis error covariance is
coherent:

o Uncertainty on a;yet is reduced
o Uncertainty on u, is unchanged
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Il — Assimilation of the real field measurements

Sensitivity of the mean concentration to the control vector

e
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» Sensitivity analysis using Sobol’ indices

)
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» The EnKF fails to estimate u, because

the observation space is less sensitive

to this parameter

» The dependence on u, is mostly

conditioned by a0t

» Perspective: using a an iterative

estimation procedure?
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Il — Assimilation of the real field measurements
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(b) Analysis

** Propagation to state estimation — Validation against measurements
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» Correction of boundary condition parameters significantly improves

concentration estimation, even at unobserved locations

Assimilated observation
Validation observation
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Il — Assimilation of the real field measurements

L. Sensitivity to the concentration anamorphosis threshold:
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y° = In(c+ c;)

d=In(c”+ 1ppm +¢;) —In(c” + )

103 10! 10!
¢’ (ppm)

p
» The choice of c; significantly affects the analysis:
the weight of low concentration deviations

» Open question: how to a priori select ¢;?

o

because the lower ¢;, the greater

\

¢y = 0.0001ppm
¢t = 0.001 ppm
¢t = 0.01 ppm
¢t = 0.04ppm
ct = 0.1ppm

ct = 1ppm
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Il — Assimilation of the real field measurements
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** Propagation to state estimation — Vertical profiles estimation

Tower B

20

—-—- Background prediction
— Analysis
Surrogate model uncertainty
---- Reference
o  Measurements

—  Observed internal variability

»  The analysis may locally degrade concentration estimation

» Parameter estimation cannot compensate for internal LES model biases

24



Conclusion and perspectives

(_[ Summary ]

» Application of a reduced-cost EnKF for reducing uncertainty in microscale pollutant dispersion modeling

N

©)

©)

©)

©)

We provided realistic error models that account for internal variability
The use of a surrogate model allows us to provide large-ensemble analysis in a very short time (< 1min)
The DA system successfully corrects wind direction from real concentration measurements

It has difficulties for inferring friction velocity and cannot correct for internal LES model bias

—
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Perspectives J

Analyze the influence of using realistic error models

Move to joint state-parameter estimation to correct for internal LES model biases

Investigate the sensitivity to observation location to develop optimal sensor network design
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Appendices

A/

** Model set-up

Solver: AVBP - LES for compressible flows and low Mach number
Sub-grid Scale Model: WALE (tailored for boundary-layers)
Numerical scheme: Lax-Wendroff (2" Order — FVM)

Pressure Gradient Scaling: to reduce the CFL constraint

Turbulence injection: Kraichnan-Celik method

O O O O O O

Mesh: unstructured, 90 million tetraedra
o Refinement near the walls:

o 30cm & Atleast 8 cells by obstacle edge

o Computational cost: 4 {60s spin-up + 200s} iy
& 20 000 hCPU ' |

28



Appendices

A/

** Air quality metrics from Chang and Hanna. 2004

c
> FAC2 : Fraction of predictions that verify 0.5 < C—p <20

o

. o )
» FB (Fractional Bias) : FB = 05
» MG (Geometric Mean Bias) : MG = exp(InC, — In Cp)
(C-—C)2
» NMSE (Normalized Mean Square Error) : NMSE = %
oCp

» VG (Geometric Variance) : VG = exp(InC, —InC,)?
With :
- C,: Measured concentrations
- C,: Concentration predicted by the model at probes location

- C: Averaged value over the dataset



Appendices

%
¢ Stationary bootstrap method used to quantify internal variability
(a) Simulated concentration at Tower B - z =2m (C) Sa‘lnple mean bOOtStrap diStribU‘tion
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Appendices
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Construction of the surrogate model

2) Train a POD—GPR surrogate model (Marrel et al. 2015) over 160 LES samples

» Dimension reduction step using Proper Orthogonal Decomposition (POD, a.k.a PCA)

>

Learn the dependency of POD coefficients on the control vector using Gaussian Process Regression (GPR)

(e(l))Ntram

LES dataset

(

@
YLEs

),

Ntram

=1

» Preprocessing

\ as (k l))I.V train

—{ Gaussian process #1 optimization }—l

'k Gaussian process #2 optimization

POD

coefficients

4{ Gaussian process #L optimization J—»‘

& -
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Appendices

R

» Construction of the surrogate model

3) Compute new prediction with the POD—GPR surrogate model

New input
parameters

0= (ainlet: u*)

POD Concentration
coefficients field prediction

v

Gaussian process #1

\ 4

Gaussian process #2

v

Gaussian process #L

4) Validation against 40 independent LES test samples

» Emulates well the LES response surface with an approximation error close to the minimal level of error
reachable given the LES internal variability

Article presenting the validation of the surrogate model currently being submitted to Building and Environment 32



Appendices
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** Set-up used to assimilate the real field measurements

Notation Setup
Truth parameters 0" = (al, e, ul) (—41°,0.73ms™1)
Background parameters 6% = (ai-’nlet, uf,’,) (—25°,0.57ms™1)
2
Background errors B = (Uo‘gﬂ"" g ) with oo, ., =25°, 0y, = 0.09ms™1
o
13 observations of concentration

Observation network y at towers C (1, 2, 3m), D (1, 2, 3m)

T (1, 2, 4, 6, 8, 10m) and DPID #26
Observation error R See Sect. V.3.2
EnKF ensemble size N, 500

Anamorphosis threshold (ye, ug) (0.04 ppm, 0.04ms™!)




Appendices

A/

** Anamorphosis for friction velocity

u, = In(u, + c;)

[]%V&lue = 0.58]

3 1 SAMS #8
= ] SAMS #9
g) 2 [ 1 Tower S averaged over 200s

Fitted log-normal distribution

0.0 0.5 1.0



Appendices
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** Background error covariance matrix estimation

o Statistics based on 12 days of measurements of the difference between the two nearest masts

b
0.015 ([ ) : ]
s i / U(e [a’inlet]) =65°
'}"”, ' 7| Légende
bt o s,‘niv? 5] Experimental site i
o : SAMS #15 50'010
® sAMS #16 @
7 © sAvs#8 @
| @ SAMS#9 - 0.005 1
0.000

0348l .
-[.p(elj[ainlet], e’lu]) = -0.02]

e’lu.] (ms™)
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Appendices
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» Effect of the concentration anamorphosis threshold

¢t = 0.04 ppm

- (a) Tower B (b) Tower T
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s Effect of the concentration anamorphosis threshold

¢t = 0.04 ppm ¢t = 0.1 ppm
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