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Context

Lubrizol factory fire in Rouen in September 2019 
LP/JEAN PIERRE MAUGER

Pollutant dispersion is involved in many applications related to safety/public 
health (industrial accident, traffic air pollution, wildfire smoke)

v Focus on microscale dispersion in urban environments

v Large-eddy simulation (LES) modeling
⊕ Resolves the largest turbulence scales
⊕ Explicitly accounts for the effect of urban buildings on the 

atmospheric flow and dispersion
⊕ Provides a spatio-temporal description of the phenomenon

Implement a reduced-cost DA system to reduce 
uncertainty in LES modeling of urban pollutant dispersion

General objec,ve

⊖ LES still has large uncertainty despite its substantial computational cost (Dauxois et al. 2021)
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Context

v Case study: LES of the MUST field campaign trial #2681829 (Yee and Biltoft. 2004)
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- Subgrid-scale model
- Numerical scheme

v Uncertainty in LES microscale dispersion modeling

Focus on uncertainties related 
to atmospheric conditions

Microscale internal 
variability of the ABL

Meteorological
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v State estimation versus parameter estimation

 *Mons et al. 2017, Sousa et al. 2018, Sousa et  Gorlé. 2019, Defforge et al. 2019, Defforge et al. 2021.

v Control vector definition:

Approach

At the microscale, ini:al 
condi:ons have low 
persistence 

⇒ More relevant to 
es:mate boundary 
condi:on parameters*

𝛉 = (𝛼"#$%&, 𝑢∗)

Inlet wind direction Inlet wind friction velocity

Uniform initial 
conditions

Inlet 
boundary 
condition
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Objec0ves

Take account of aleatory uncertainty linked to internal variability in the 
assimilaNon system

Objective #1

o Epistemic uncertainty on boundary condition parameters: ✓

o Aleatory uncertainty associated with the internal variability: ✗

Mons et al. 2017, Sousa and Gorlé. 
2019, Defforge et al. 2021

v Data assimilation system design
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Objec0ves

v Effect of the internal variability of the ABL on the mean concentraRon predicRons
Ø EsNmaNon using staNonary bootstrap of LES sub-averages (Lumet et al. 2024)
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Objectives

Build a surrogate model to reduce the cost of the DA system without 
compromising the accuracy of its estimates

Objective #2

Issue: LES computational cost
1 prediction ≈ 20 000 hCPU

v Data assimilaRon system design
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Contents

I. Reduced-cost DA system

II. Assimilation of the real field measurements
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I – Reduced-cost DA system

The dataset is being put online in open access on Zenodo 

v Construction of the surrogate model
1) Computation of a dataset of 200 LES using Halton’s sequence to sample the control vector space
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I – Reduced-cost DA system

v ConstrucRon of the surrogate model
2) Train a POD—GPR surrogate model (Marrel et al. 2015) over 160 LES samples

Ø Dimension reduc:on step using Proper Orthogonal Decomposi:on (POD, a.k.a PCA)

Ø Learn the dependency of POD coefficients on the control vector using Gaussian Process Regression (GPR)

3) Valida,on against 40 independent LES test samples
Ø Surrogate error close to the minimal level of error reachable given the LES internal variability

Article presenting the validation of the surrogate model currently being submitted to Building and Environment
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I – Reduced-cost DA system

v Errors modeling for the MUST case
Ø What is the surrogate model error?
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I – Reduced-cost DA system

v Taking into account model error
Ø During the EnKF predic,on step:

With ℳ(") a random sample from the POD—GPR distribu:on

𝐱($)
& = ℳ($) 𝛉 $

' , 1 ≤ 𝑖 ≤ 𝑁(
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Ø We show that the POD—GPR variance covers 
o The regression error of each GP
o The aleatory uncertainty associated with internal variability

Ø This approach integrates the spatial correlations of the errors
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I – Reduced-cost DA system

v Errors modeling for the MUST case

Ø Which measurements do we assimilate?

Ø What is their uncertainty 𝐑? 

✓
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I – Reduced-cost DA system

Ø Observa,on vector 𝐲𝒐 = {13 mean concentraNon measurements from 4 masts as in Defforge et al. 2021}

Ø Observa,on error 𝐞* 	= 𝑚𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 + 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑒𝑟𝑟𝑜𝑟

Ø Observa,on error covariance matrix 𝐑 = esNmated using staNonary bootstrap (Lumet et al. 2024)

Ø We can also take into account for spatial correlations of observation errors

Assimilated sensors

Validation sensors
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I – Reduced-cost DA system

v Errors modeling for the MUST case

Ø Background error covariance matrix 𝐁 = 𝐂𝐨𝐯(𝑒$ 𝛼%&'() , 𝑒$ 𝑢∗ ) es:mated by a microclimatology

Ø Log anamorphosis for the fric:on velocity: 4𝑢∗ = ln 𝑢∗ + 𝑢)

⚠ The hypothesis of a normally distributed error for the wind direc:on is rejected (𝛼%&'() ∈] − 𝜋, 𝜋])

✓

✓
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v Ensemble size selecRon using OSSEs
Ø Compromise between accuracy and computaNonal cost ⇒
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I – Reduced-cost DA system

𝑁( = 500

1 cycle with 500 surrogate members ≈ 50 s (1 CPU)

1 cycle with 10 LES members ≈ 200 000 CPU hours

Ø Using a surrogate model and large ensemble  
also allows us to:
o Reduce sensi:vity to background sampling 
o Perform a large number of tests to op:mize 

the DA system and inves:gate its 
sensi:vi:es
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II.Assimila<on of the real field 
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v Prior parameters
Ø 𝛉' obtained by biasing the reference measurements 𝛉+(& defined using the nearest meteorological 

measurement masts (non-assimilated)
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Référence

Ébauche

Reference
Background

II – Assimila0on of the real field measurements
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II – Assimilation of the real field measurements

v Control vector esRmaRon

Ø The EnKF es:mates very well 𝛼%&'()

Ø The analysis does not improve 𝑢∗ 
es:ma:on

Ø The analysis error covariance is 
coherent: 

o Uncertainty on 𝛼!"#$% is reduced
o Uncertainty on 𝑢∗ is unchanged
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II – Assimilation of the real field measurements

v Sensitivity of the mean concentration to the control vector
Ø Sensitivity analysis using Sobol’ indices

Ø The EnKF fails to estimate 𝑢∗ because 
the observation space is less sensitive 
to this parameter

Ø The dependence on 𝑢∗ is mostly 
conditioned by 𝛼%&'()

Ø Perspective: using a an iterative 
estimation procedure?
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II – Assimila0on of the real field measurements

v Propagation to state estimation – Validation  against measurements

Ø Correc:on of boundary condi:on parameters significantly improves 
concentra:on es:ma:on, even at unobserved loca:ons
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II – Assimila0on of the real field measurements

⚠   SensiRvity to the concentraRon anamorphosis threshold: 

Ø The choice of 𝑐) significantly affects the analysis: because the lower 𝑐), the greater 
the weight of low concentration deviations

Ø Open question: how to a priori select 𝑐)?
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II – Assimila0on of the real field measurements

v Propagation to state estimation – Vertical profiles estimation

Ø The analysis may locally degrade concentra:on es:ma:on

Ø Parameter es:ma:on cannot compensate for internal LES model biases
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Conclusion and perspec0ves

Ø ApplicaNon of a reduced-cost EnKF for reducing uncertainty in microscale pollutant dispersion modeling

o We provided realis:c error models that account for internal variability

o The use of a surrogate model allows us to provide large-ensemble analysis in a very short :me (< 1min) 

o The DA system successfully corrects wind direc:on from real concentra:on measurements 

o It has difficul:es for inferring fric:on velocity and cannot correct for internal LES model bias

Summary

I. Analyze the influence of using realistic error models

II. Move to joint state-parameter estimation to correct for internal LES model biases

III. Investigate the sensitivity to observation location to develop optimal sensor network design

PerspecRves
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Appendices
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Appendices

v Model set-up

Inflow

Ou<low

Symmetry

Wall laws

Symmetry

𝐿 = 420 𝑚
ℎ = 50 𝑚

𝑑!"#$% = 80 𝑚

o Solver: AVBP - LES for compressible flows and low Mach number
o Sub-grid Scale Model: WALE (tailored for boundary-layers)
o Numerical scheme: Lax-Wendroff (2nd Order – FVM)
o Pressure Gradient Scaling: to reduce the CFL constraint
o Turbulence injection: Kraichnan-Celik method
o Mesh: unstructured, 90 million tetraedra

o Refinement near the walls: 
o 30 cm ⇔ At least 8 cells by obstacle edge

o Computational cost: {60s spin-up + 200s} 
⟺ 20 000 hCPU
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Appendices

v Air quality metrics from Chang and Hanna. 2004

Ø FAC2 : FracNon of predicNons that verify 0.5	 ≤ ,'
,(
≤ 2.0

Ø FB (Frac3onal Bias) : 𝐹𝐵 = (,(	.,')
/.1(,(2,')

Ø MG (Geometric Mean Bias) : 𝑀𝐺 = exp(ln 𝐶* − ln𝐶3)

Ø NMSE (Normalized Mean Square Error) : NM𝑆𝐸 = (,(	.	,'))

,( ,'

Ø VG (Geometric Variance) : VG = 	exp(ln 𝐶* 	− ln 𝐶3)4

With : 
- 𝐶-: Measured concentra:ons
- 𝐶.: Concentra:on predicted by the model at probes loca:on

- ̅𝐶: Averaged value over the dataset
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Appendices

v StaRonary bootstrap method used to quanRfy internal variability
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v Construction of the surrogate model
2) Train a POD—GPR surrogate model (Marrel et al. 2015) over 160 LES samples

Ø Dimension reduction step using Proper Orthogonal Decomposition (POD, a.k.a PCA)

Ø Learn the dependency of POD coefficients on the control vector using Gaussian Process Regression (GPR)

Appendices
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v ConstrucRon of the surrogate model
3) Compute new predic,on with the POD—GPR surrogate model

4) Valida,on against 40 independent LES test samples

Ø Emulates well the LES response surface with an approxima:on error close to the minimal level of error 
reachable given the LES internal variability

𝑘*

𝑘+

𝑘,

Gaussian process #L

Gaussian process #2

Gaussian process #1New input 
parameters

⋮ ⋮

Concentra:on 
field predic:on

POD 
coefficients

Inverse 
POD 

projec:on
𝛉 = (𝛼!"#$%, 𝑢∗)

Article presenting the validation of the surrogate model currently being submitted to Building and Environment

Appendices
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v Set-up used to assimilate the real field measurements

Appendices
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Appendices
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v Anamorphosis for fricRon velocity

/𝑢∗ = 𝑙𝑛 𝑢∗ + 𝑐&
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Appendices

v Background error covariance matrix estimation
o Statistics based on 12 days of measurements of the difference between the two nearest masts
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Appendices

16/10/2023

v Effect of the concentration anamorphosis threshold
𝑐% = 0.1 ppm𝑐% = 0.04 ppm



| 37

Appendices

v Effect of the concentration anamorphosis threshold
𝑐% = 0.1 ppm𝑐% = 0.04 ppm

En concentration log 


