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Do EnKF’s trivially converge at an infinite ensemble size?

?

No.
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How come they do not converge?

Consider the stochastic heat equation,

dut(x) = α div∇ ut(x) dt+ σ dWt. (1)

Let u be a p-vector of values indexed by time t and space x.

Let Un be an n× pmatrix of n-samples, u(i). The sample covariance

Σ̂
∗
u =

1

n− 1

n∑
i=1

(u(i) − u)(u(i) − u)⊤, (2)

does not trivially converge to the population covariance
Σu = E[(u− E[u])(u− E[u])⊤] when both n and p → ∞.

EnKF’s (estimated) Kalman gains are a function of sample covariance++.
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Why care about convergence also when p → ∞?

Wework with spatio-temporal models.

Often, numerical integration promised to work as∆x → 0.

But∆x → 0 implies p → ∞ in a statistical setting.

For ensemble based methods, we need to guarantee convergence under
simultaneous limits p → ∞ and n → ∞.
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What would we expect if things go wrong?

Common statistical estimation theory on overfitting would suggest

1. Random updates in the mean or single realizations.

2. Overconfidence (loss of variability) due to belief in (random) connections and
propagating a Bayesian update through them.

Uh, oh. This sounds familiar

Spurious correlations: Random updates in mean and single realizations.

Ensemble collapse: Loss of variability.

From neglecting effects of p → ∞ we have incurred a very real problem.
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Spurious correlations and ensemble collapse
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Scalability also means good statistical properties!

A KLD / Likelihood perspective:

Minimize

DKL(P ‖ Q) =

∫ ∫
p(u, y) log

(
p(u, y)
q(u, y)

)
dudy,

where P is the data-generating-process andQ(θ) is our model.

WhenQ is Gaussian, we have a Kalman-type method.

θ is typically estimated. Statistical convergencematters (not just asymptotic
expectations!).
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Ensemble Smoother (ES)

n = 100

n = 1000
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Berent’s biased map of methods

Powerful Statistics (KLD)

Noisy Statistics

ScalabilityTortoise

ES
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Adaptive Localization n = 100
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Triangular measure transport: MIT at EnKF 2023

How does it scale computationally?

Must search for the rearrangement.

Must learn the degree of non-linearity.
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Berent’s biased map of methods

Kalman limit

Powerful Statistics (KLD)

Noisy Statistics

ScalabilityTortoise

ES

Adaptive-Localization

MIT::TMT

17/57



Patrick EnKFWS 2023: EnKF/ES uses and is LLS

The Kalman-type ensemble-based data assimilation

uiposterior = uiprior + KEnKF(di − h(uiprior))

where

KEnKF = UY⊤
(
YY⊤ +Σϵ

)−1

= UU⊤(YU+)⊤
(
YY⊤ +Σϵ

)−1
LLS (noisy) on map h : u 7→ y

≈ UD⊤(DD⊤)+

= UD+ LLS on map h−1 : d 7→ u

But what is lost in the wave? Think Gauss-Markov and BLUE
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Berent’s biased map of methods

Kalman limit

Powerful Statistics (KLD)

Noisy Statistics

ScalabilityTortoise

ES

Adaptive-Localization

MIT::TMT

LLS
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A 3-point plan after last years workshop

⋆ Regularised linear regression on map h−1 : d 7→ u (Lasso).

⋆⋆ The Ensemble Information Filter (EnIF).

⋆ ⋆ ⋆ Information theoretic triangular measure transport (IT-TMT).
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EnIF:Cholesky & EnIF::Direct n = 100

Cholesky

Direct
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Berent’s biased map of methods

Kalman limit

Powerful Statistics (KLD)

Noisy Statistics

ScalabilityTortoise

ES

Adaptive-Localization

MIT::TMT

LLS

LASSO
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Information Theoretic (adaptive) Triangular Measure Transport
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Recap so far

The statistical convergence of methods cannot be neglected. Both p and nmust
be considered. Methods are spatio-temporal.

When only considering asymptotic expectations, everything seems to be okay.
Do not forget variance of statistics.

The map of methods is my subjective and biased view of things.
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Theoretical guidelines for KLD optimisation

References: Akaike 1974; Takeuchi 1976;
Claeskens and Hjort 2008; Hastie, Tibshirani,
et al. 2009

Information criteria and tools

Given model complexity

Reason about test loss
TIC: tr(∇2

θ l cov(θ̂))
AIC: p = len(θ)

→ Reparametrisation, with
smaller p.

→ Regularization: Trade bias for
variance
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Searching for a reparametrisation of θ

Do we have structure?
Let L be a differential operator, then the solution to

Lu(x) = W(·)

is a Gaussian random field and it has the Markov property.

Heuristically: derivatives (local) create the Markov properties (local).

More robustly: through power spectrum, covariance operator and its inverse
(precision) operator. Rozanov 1977 Lindgren, Håvard Rue, and Lindström 2011
SPDE approach: approximate non-Markov field (solutions) by Markov fields.
Computationally important: Λu = Σ−1

u is sparse for GMRF.
If Λu is sparse, then p = len(θ) ismuch smaller than in the covariance
parametrisation. Training bias in KLD is positively monotone in p.

27/57



Searching for a reparametrisation of θ

Do we have structure?
Let L be a differential operator, then the solution to

Lu(x) = W(·)

is a Gaussian random field and it has the Markov property.

Heuristically: derivatives (local) create the Markov properties (local).
More robustly: through power spectrum, covariance operator and its inverse
(precision) operator. Rozanov 1977 Lindgren, Håvard Rue, and Lindström 2011

SPDE approach: approximate non-Markov field (solutions) by Markov fields.
Computationally important: Λu = Σ−1

u is sparse for GMRF.
If Λu is sparse, then p = len(θ) ismuch smaller than in the covariance
parametrisation. Training bias in KLD is positively monotone in p.

27/57



Searching for a reparametrisation of θ

Do we have structure?
Let L be a differential operator, then the solution to

Lu(x) = W(·)

is a Gaussian random field and it has the Markov property.

Heuristically: derivatives (local) create the Markov properties (local).
More robustly: through power spectrum, covariance operator and its inverse
(precision) operator. Rozanov 1977 Lindgren, Håvard Rue, and Lindström 2011
SPDE approach: approximate non-Markov field (solutions) by Markov fields.

Computationally important: Λu = Σ−1
u is sparse for GMRF.

If Λu is sparse, then p = len(θ) ismuch smaller than in the covariance
parametrisation. Training bias in KLD is positively monotone in p.

27/57



Searching for a reparametrisation of θ

Do we have structure?
Let L be a differential operator, then the solution to

Lu(x) = W(·)

is a Gaussian random field and it has the Markov property.

Heuristically: derivatives (local) create the Markov properties (local).
More robustly: through power spectrum, covariance operator and its inverse
(precision) operator. Rozanov 1977 Lindgren, Håvard Rue, and Lindström 2011
SPDE approach: approximate non-Markov field (solutions) by Markov fields.
Computationally important: Λu = Σ−1

u is sparse for GMRF.

If Λu is sparse, then p = len(θ) ismuch smaller than in the covariance
parametrisation. Training bias in KLD is positively monotone in p.

27/57



Searching for a reparametrisation of θ

Do we have structure?
Let L be a differential operator, then the solution to

Lu(x) = W(·)

is a Gaussian random field and it has the Markov property.

Heuristically: derivatives (local) create the Markov properties (local).
More robustly: through power spectrum, covariance operator and its inverse
(precision) operator. Rozanov 1977 Lindgren, Håvard Rue, and Lindström 2011
SPDE approach: approximate non-Markov field (solutions) by Markov fields.
Computationally important: Λu = Σ−1

u is sparse for GMRF.
If Λu is sparse, then p = len(θ) ismuch smaller than in the covariance
parametrisation. Training bias in KLD is positively monotone in p.

27/57



Easier with a discretised example

A stochastic wave equation

d2ut(x) = cdiv∇ ut(x)dt2 + σdWt

suggests a simple finite difference discretization, in the 1-d case:

uj+1
i = 2uji − uj−1

i +
c2∆t2

∆x2
(uji+1 − 2uji + uji−1) + σ

√
dtZ, Z ∼ N (0, 1)

So uj+1
i is only a function of uji, u

j−1
i , uji−1, and u

j
i+1. Not all of u.
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Discretization incur spatio-temporal conditional independence

uj+1
i

uji

uj−1
i

uji−1 uji+1

uj+1
i−1 uj+1

i+1

uj−1
i−1 uj−1

i+1uj−1
i−2

uji−2

uj+1
i−2

uj−1
i+2

uji+2

uj+1
i+2

Time

t

Space
x

29/57



What are we doing with EnKFs?

uj+1
i

uji

uj−1
i

uji−1 uji+1

uj+1
i−1 uj+1

i+1

uj−1
i−1 uj−1

i+1uj−1
i−2

uji−2

uj+1
i−2

uj−1
i+2

uji+2

uj+1
i+2

Time

t

Space
x
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What are we doing with EnKFs?

The sample covariance correspond to estimation w.r.t. a complete graph.

So there is no local solution, every displacement is a function of the global state.

We also consider teleportation of information.

We try to learn the physics from scratch. We need a lot of data.
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How to exploit this?

Conditional (in)dependence depends on discretisation scheme.
Smoothing, filtering and parameter estimation are different.

Smoothing: natural graph from (s)pde.

Filtering: A complete graph! No exact conditional independence.

Parameter estimation: Sampling from independence or variograms.

We only require a (parsimonious!) approximation.
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Where to use conditional independence information?

How EnKF’s work
Let u and y be jointly Gaussian. Then, a sample (ui, yi) is mapped to a sample from
the conditional p(u|y), having observed y∗, via the formula

ui + K(y∗ − yi) ∼ p(u|y∗).

where the ”Kalman gain” K is defined as K = ΣuyΣ
−1
y , which is estimated.

K = Λ−1
t|t H

⊤Λrt using Woodbury (surprise) Moore and Anderson 1979.

Λt|t = Λt|t−1 + H⊤ΛrtH is dense if H is dense.
Havard Rue and Held 2005 H is dense for geostatistcs. This won’t work.
IF equations u(i)t|t = Λ−1

t|t η
(i)
t|t computationally infeasible.

But H is estimated. Remember KLD. Choose regularisation to obtain sparse H.
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The Ensemble Information Filter

Sample from belief
u(i)t−1|t−1

∼ p(ut−1|t−1) i = 1, . . . , n

Predict
u(i)t|t−1

= g(u(i)t−1|t−1
)

Estimate
Using sample {u(i)t|t−1

}ni=1 estimate Λ̂t|t−1 w.r.t. graph G
And Ĥ as a sparse linear map

Update realizations and precision
η
(i)
t|t−1

= Λ̂t|t−1u
(i)
t|t−1

η̂t|t = η̂t|t−1 + Ĥ⊤Λr(yt − r(i))

Λ̂t|t = Λ̂t|t−1 + Ĥ⊤ΛrĤ

Bring realizations back to original space
u(i)t|t = Λ̂

−1
t|t η

(i)
t|t
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Recap on EnIF

KLD warrants the use of structure and regularisation.

Structure can come from the model, e.g. (S)PDE.

Derivatives (local) leads to Markov properties (local), perhaps approximately.

EnIF is a reparametrisation of the Gaussian update in EnKF. Regularised and
encoding (Markov) structure.

Sparsity is a necessity for computation.
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An Equinor history matching problem

About 10 million parameters p.
About 100-1000 static parameters
Some surfaces of size about 300× 300
Some 3D fields of size about 100× 100× 100

Ensemble size n about 100-200.

Number of responsesm about 100-1000, more if seismic is included.

And how to understand the update for a domain expert?
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EnIF using off-the-shelf libraries vs. with innovations

Kalman limit

Powerful Statistics (KLD)

Noisy Statistics

ScalabilityTortoise

ES

Adaptive-Localization

MIT::TMT

LLS

LASSO

EnIFEnIF

IT-TMT

Line of novelty
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First hurdle: learning H

First thought: L1/LASSO
regression Tibshirani 1996

For sparsity the go-to solution.

It is efficient, but...

Not that efficient.
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Boosting out the solution path

Algorithm Boosting Monotone-LASSO

1: Initialize β̂0 = 0
2: while msecv−n(X, y; β̂k) > msecv−n(X, y; β̂k+1) do
3: Calculate all 1d linear regressions
4: Select βj as the one reducing training mse the most
5: β̂k+1,j+ = ϵβj
6: end while
7: return β̂

LASSO, LARS, FS-ϵ and
Boosting relations.
Hastie, Taylor, et al. 2007

cv-n implies n times more computation. Unless...
θ̂−i →n θ̂ − n−1IF(yi, xi), where the influence IF is found using the asymptotic
properties of β̂j as an M-estimators. cv-n and TIC relation through IF. Claeskens
and Hjort 2008
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Information theoretic stopping criterion

Information criteria and tools

Boost out monotone-LASSO
solution paths.

With information theoretic
stopping criterion!
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Second hurdle: Graph optimisation and fill-in

Given a permutation optimised for a sparse
Cholesky factoer

L∗L⊤∗ = P⊤∗ ΛuP∗

We can find a relation to the linear triangular
transport map C(π∗)

Λu = PrP∗C(π∗)⊤C(π∗)P⊤∗ Pr.

where Pr is the reverse permutation matrix.
Learn C(π∗) row-by-row like in TMT, with the same sparsity as L∗ (but reversed and
transposed).
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Fill-in reducing optimised permutation

Fill-in reducing algorithms

Finding optimal permutation is NP-hard.

AMD and METIS etc. good for 2D but struggle with 3D and 4D! Amestoy, Davis,
and Duff 2004

AMD on graph from 3D cube with 800000 elements. 20 minutes to optimise, with
about 130 million elements in Cholesky factor. compared to about 2-3 million in
precision matrix.
The dense Cholesky would have 320× 109.

This is a limitation also for triangular measure transport.
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Optimise Λ directly column-by-column

Searched far and wide for an algorithm estimation
Λ conditioned on G .

Surprisingly little literature, and what exist often
does not scale (e.g. ESL Alg. 17.1, the basis of much
more well known Graphical-Lasso Alg. 17.2. Hastie,
Tibshirani, et al. 2009

Reverted to GraphSPME library.
Benefits: very fast and no fill-in.
disadvantages: Does not optimise the likelihood
directly, symmetry, and condition number.
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Third hurdle: Map the realisations back

The final step of EnIF is to map from ”canonical” realisations to physical ones.

ut|t = Λ−1
t|t νt|t

The natural solver is the (permutation optimised) sparse Cholesky solver.

From graph-estimation we know this will fail on large 3D problems.

An iterative solver is the solution: Λt|t is SPD and sparse, thus Conjugate gradient.
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Neighbourhood inversion

A ”localization” effect from assuming Markov properties:
Covariance effect through path (think AR-p) exhibits exponential decay in steps.

We may pick out observations that are updated directly from the learnt Ĥ.
Choose a neighbourhood-propagation, say k and update all observations
within k neighbours ”distance” from the direct updates.

The system of equationsΛu = η in block-form:[
Λ11 Λ12

Λ21 Λ22

] [
u1
u2

]
=

[
η1

η2

]
Given u1 is known from a previous computation, we can update u2 as follows:

u2 = Λ−1
22 (η2 −Λ21u1)

Potentially a much smaller system.
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Choose a neighbourhood-propagation, say k and update all observations
within k neighbours ”distance” from the direct updates.

The system of equationsΛu = η in block-form:[
Λ11 Λ12

Λ21 Λ22

] [
u1
u2

]
=

[
η1

η2

]
Given u1 is known from a previous computation, we can update u2 as follows:

u2 = Λ−1
22 (η2 −Λ21u1)

Potentially a much smaller system. 46/57



EnKF’s and convergence

Method scalability

KLD, Structure, & EnIF

Innovations for scalability

Synthetic reservoir application: Sequential EnIF

47/57



The Synthetic case

About 8.5 million parameters p.
About 72 static parameters
4× 2D surfaces of size 123921
9× 3D fields of size 886512

Ensemble size n = 100.

Number of responsesm = 117, more if seismic is included.

Full EnIF update in ERT takes about 20 minutes.

Question:
How to understand or inspect the update for a domain expert?
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Problem: Understanding the update

Joint assimilation is fast! But yields little understanding

The engineer can know more than learned from data.

KLD is not the objective of the engineer. Understanding, tuning, and a story?

Algorithm Sequential EnIF

1: Sample ensemble, estimate prior precision
2: for each batch db of observations do
3: Fit the sparse linear sub-map Ĥb

4: for each observation k in batch b do
5: Inspect Ĥb(k), tweak, understand effect, approve and a story
6: end for
7: Assimilate db using the (additive) EnIF update
8: end for 49/57



Demo in Notebook

Go to jupyter notebook
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If the demo did not work...

51/57



Update and Match
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Summary of talk

Statistial convergence!

Structure and regularisation!

EnIF incorporates the above

Computational innovations for extra scalability

Care about users: Sequential assimilation for understanding
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Thank you!
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