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Summary

Motivation. Covariance localization has been the key to the success of ensemble data
assimilation in high dimensional problems, especially in global numerical weather
prediction.

Idea. We review and synthesize optimal and adaptive localization methods that are rooted in
sampling error theory and that are defined by optimality criteria, e.g., minimizing errors in
forecast covariances or in the Kalman gain.
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Tllustration of a cycling EnKF. The ensemble forecast (blue) is updated in view of
observations (red) and associated errors (error bars).

Ensemble Kalman filter (EnKF)

The ensemble Kalman filter (EnKF) refers to a class of algorithms that update the forecast of a
numerical model in view of an observation

« Use an ensemble to describe the state of the atmosphere and its associated uncertainty
« Update each ensemble member in view of the observation y
x¢ =¥/ + K(y - (H¥ + 1)),
K = PH'(HPH” + R)™',
where x{ are the forecast ensemble members, H is a linear or linearized observation operator,

R is the observation error covariance, 77 is a draw from a normal distribution with mean zero
and covariance R, P is the forecast covariance, and K is the Kalman gain
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Illustration of Schur-product-localization. The Schur product of the
localization matrix with the empirical covariance matrix is the localized estimate.

Localization

« The ensemble size n, is much smaller than the number of state variables, n,, or the number of
observations, ny (n, < n,<n)

« The small ensemble size renders the empirical estimate of the forecast covariance P inaccurate
and, hence, the Kalman gain and EnKF are also inaccurate

« Localization is a suite of methods that boosts the accuracy of the forecast covariance by
enforcing on the empirical covariance the assumption that correlations decay with distance

« The localized estimate after Schur-product-localization is
P, =L-P,
where L is a symmetric positive semi-definite localization matrix (Gaspari-Cohn) that dampens
spurious, far-field covariances
« Within an ensemble adjustment Kalman filter (EAKF), we localize the Kalman gain

Kiloc =1i°K;,

where l/ is a vector that reduces the effects of far-away observations, K/ = Ph;r(h/Ph/T + r/)’I is

the Kalman gain associated with the jth observation, and where r; is the associated observation
error variance

Optimal localization

« How do we construct localization schemes? We search for localization schemes that minimize
errors

Prior optimal localization

« Find the best Schur product estimator that minimizes
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where p; is the correlation between components i and j, and where ( - ) is an average (Morzfeld
& Hodyss, 2023; Ménétrier et al., 2015)

Flowerdew’s optimal localization
« Flowerdew (2015) derives the optimal localization (similar assumptions as above)
- /)5 + o :

ij
where o, is computed from p; and n,
Posterior optimal localization

« We find the best approximation to the Kalman gain within an EAKF
min((aK — Kye)?)
a

« Using a Taylor expansion, we find (Morzfeld & Hodyss, 2023)
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where r is the observation error, crf = hPh’ and p= 1/(0‘3 +r
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Comparison of several optimal/adaptive localization schemes. All methods
k damp far-field correlations and all methods are surprisingly similar. j

Universal localization law

« All optimal localizations follow a universal law

where the constants ¢, and ¢, define the “type of optimality”

« Localization schemes based on this “universal” law may be broadly applicable and useful
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Numerical tests

« We applied optimal and sub-optimal localization methods to four covariance matrices
« All schemes perform very similarly in terms of analysis RMSE of an EnKF update
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Summary of numerical tests. All localization methods lead to a very similar

analysis RMSE (scaled by infinite ensemble size RMSE) on four different covariance
types (two are not shown).

Analysis

« We analyze errors of localization schemes with the help of the canonical example of a high-
dimensional isotropic Gaussian (due to Peter Bickel and others)

+The analysis reveals that deleting far-field correlations drastically reduces errors, but
correlations in the near-field are a second-order effect (theory in a 12 page Appendix)
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Results

1. All optimal localization methods follow a universal law and are quite similar.

2. We confirm the similarity of the various schemes in idealized numerical experiments,
where we observe that all localization schemes we test — optimal and non-adaptive
schemes — perform quite similarly in a wide-array of problems.

3. We explain this surprising finding with mathematical rigor on an idealized class of
problems, first put forward by Bickel and others to study the collapse of particle filters.

4. The numerical experiments and the theory show that the most important attribute of a
localization scheme is the well-known property that one should dampen spurious
long-range correlations. The details of the correlation structure have a second order

effect.
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