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?Hybrid refers to a combination of two methods of estimation gradients.
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Parameter estimation and UQ in porous media flow

Two-phase incompressible flow in a porous medium.

%81:5“ =V [Aa(Sw)KVp] = qq for a = o, w

and
50 + SW = 1.

where permeability K = €™ and porosity ¢ are uncertain.
Observe historical water production rates at a few locations.

e Typically high-dimensional, relatively few data
e minimization, but no derivatives available

e ensemble-Kalman methods sometimes fail
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History matching

production data
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History matching
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History matching
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Good data match, but calibrated model not similar to the “truth”.
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For problems with several similar minima, standard ensemble-

based sampling methods will fail*
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MCMC ensemble smoother random minimizer

Random minimizer potentially samples all modes. Example is
overly simplistic.

'Dunbar et al. (2022) “Ensemble Inference Methods for Models With Noisy
and Expensive Likelihoods”
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Data assimilation — Minimization for sampling

1. Sample gaussian random variables x* ~ N(xP*, C,)
2. Sample the observation error ¢* ~ N(0, Cy)

3. Compute argmin, [|d° — (g(x) + ")|2 s + [lx — x*[[2
d X
Gauss-Newton minimization
-1
oxp = x* — xp — GG, [cd + G,Cy G]]

X {(g(x(g) + € —d°) — Gy(xg — x¥)|.

where GT = V,gT. (For subsurface flow problems, V,g7 is often
unavailable.)
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Hybrid iterative ensemble smoother

Consider composite mappings d = g(m(x))

For the hybrid IES, the derivatives of m with respective to x and
of data g with respective to m are required.

G =Vu(g") = Gn(Vu(m"))" = G M,
A hybrid approximation of the Gauss-Newton update:
Oxpi1 = —(xp — x*) — CXMXTG,,T,<Cd + Gr,,/\/IXcXMXTG,Z)*1
X (g(mg) +e —d°— G M, (x; — x*))7

where G, = (Ad,)(Amy)~L.
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Example: flow in porous medium with multiple rock types?
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log-permeability, m(x) water rate, g(m(x))

m = 2tanh(4x + 2) + tanh(2 — 4x) — 1

Generates channel-like features of high permeability.

?Ba and Oliver (2024)
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Example: flow in porous medium with multiple rock types?
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Difficulties

with this problem

Hybrid IES

IES

Observations shown by circles. Better match to data with IES.
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Fitness landscape
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Data misfit function in 2D subspace that includes truth (Oliver,
2022). Many history-matched models end up in “unimportant”
local minima.
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Posterior sampling
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Model realizations for non-monotonic transform of log-permeability
using hybrid IES and IES, respectivly. Lack of diversity in IES
samples.

10/18



~ [0 4
JANN vy
ANAN YA

Hybrid IES

Model realizations for non-monotonic transform of log-permeability

large wts posterior prior

using hybrid IES and IES, respectivly. Lack of diversity in IES
samples.

10/18



Posterior sampling

MCMC IES random minimizer
e Modes are probably not equally deep.

e |ES likely to migrate to one mode.

e Random minimizer still likely to sample all — but not all of
equal importance.
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Importance weights (Ba et al., 2022)

The importance weight for a sample obtained using a

b - - - - ” -
minimization” approach is

Target probability 7x(x)ma(d]x)
= . X
Proposal probability pxa(x,d)

Proposal density for samples from the prior pdf:
axar(x',8") = gx:(x') qar(8")

An approximate posterior sample is then generated by computing

the critical points of the cost functional
1 1

Qx) = 5(x—x)TC A x—x) + 5 (g(m) ~ )T C;(g(m) - ).
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Importance weights

Solving V,Q(x) = 0 leads to a map from (x, d) to (x',d"),

x'=x+ CG'C;'(g(m) - 4)
6 =4.

so the proposal pdf is given by>

pxa(x,8) = n(x") " qx: <X+ CXGTCd_l(g(m)_(s))qA/((S)J(X7 9),

®If VxQ(x) = 0 has multiple solutions, we should either obtain all critical
points, or randomly sample.
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Effect of weighting (highly non-linear)
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The posterior predictions for wells 2 and 6 using hybrid IES for the
non-monotonic transform. Black points show observations.
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e Possibly many local minima in posterior pdf for parameter

estimation in porous media.

e If iterate long enough, IES generally converges to a single
minima (but often a “good one").

e Hybrid IES has much greater diversity, but includes minima

with low probability mass.

e Importance weighting of particles from hybrid-IES improves

forecasts.
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Ensemble collapse?

Very small spread of data predictions does not imply “collapse” of

posterior

time step

the ensemble of model realizations.
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