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aHybrid refers to a combination of two methods of estimation gradients. 1/18



Parameter estimation and UQ in porous media flow

Two-phase incompressible flow in a porous medium.

ϕ
∂

∂t
Sα −∇ · [λα(Sw )K∇p] = qα for α = o, w

and

So + Sw = 1.

where permeability K = em and porosity ϕ are uncertain.

Observe historical water production rates at a few locations.

• Typically high-dimensional, relatively few data

• minimization, but no derivatives available

• ensemble-Kalman methods sometimes fail

2/18



History matching
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For problems with several similar minima, standard ensemble-

based sampling methods will fail1

MCMC ensemble smoother random minimizer

Random minimizer potentially samples all modes. Example is

overly simplistic.

1Dunbar et al. (2022) “Ensemble Inference Methods for Models With Noisy

and Expensive Likelihoods”
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Data assimilation – Minimization for sampling

1. Sample gaussian random variables x∗ ∼ N(xpr,Cx)

2. Sample the observation error ϵ∗ ∼ N(0,Cd)

3. Compute argminx ∥do − (g(x) + ϵ∗)∥2
C−1
d

+ ∥x − x∗∥2
C−1
x

Gauss-Newton minimization

δxℓ = x∗ − xℓ − CxG
T
ℓ

[
Cd + GℓCxG

T
ℓ

]−1

×
[
(g(xℓ) + ϵ∗ − do)− Gℓ(xℓ − x∗)

]
.

where GT = ∇xg
T. (For subsurface flow problems, ∇xg

T is often

unavailable.)
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Hybrid iterative ensemble smoother

Consider composite mappings d = g(m(x))

For the hybrid IES, the derivatives of m with respective to x and

of data g with respective to m are required.

G = ∇x(g
T ) = Gm.(∇x(mT ))T = GmMx

A hybrid approximation of the Gauss-Newton update:

δxℓ+1 = −(xℓ − x∗)− CxMT
x GT

m

(
Cd + GmMxCxMT

x GT
m

)−1

×

(
g(mℓ) + ϵ∗ − d o − GmMx(xℓ − x∗)

)
,

where Gm = (∆dℓ)(∆mℓ)
−1.
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Example: flow in porous medium with multiple rock types2
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2Ba and Oliver (2024)
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Difficulties with this problem
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Fitness landscape
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Data misfit function in 2D subspace that includes truth (Oliver,

2022). Many history-matched models end up in “unimportant”

local minima.
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Posterior sampling
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Posterior sampling

MCMC IES random minimizer

• Modes are probably not equally deep.

• IES likely to migrate to one mode.

• Random minimizer still likely to sample all – but not all of

equal importance.
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Importance weights (Ba et al., 2022)

The importance weight for a sample obtained using a

“minimization” approach is

ω =
Target probability

Proposal probability
∝ πX (x)π∆(δ|x)

pX∆(x , δ)
,

Proposal density for samples from the prior pdf:

qX ′∆′(x ′, δ′) = qX ′(x ′) q∆′(δ′)

An approximate posterior sample is then generated by computing

the critical points of the cost functional

Q(x) =
1

2
(x − x ′)TC−1

x (x − x ′)+
1

2
(g(m)−δ′)TC−1

d (g(m)−δ′).
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Importance weights

Solving ∇xQ(x) = 0 leads to a map from (x , δ) to (x ′, δ′),{
x ′ = x + CxGTC−1

d

(
g(m)− δ

)
δ′ = δ.

so the proposal pdf is given by3

pX∆(x , δ) = n(x ′)−1qX ′

(
x+CxGTC−1

d

(
g(m)−δ

))
q∆′(δ)J(x , δ),

3If ∇xQ(x) = 0 has multiple solutions, we should either obtain all critical

points, or randomly sample.
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Effect of weighting (highly non-linear)

Unweighted samples Weighted samples

The posterior predictions for wells 2 and 6 using hybrid IES for the

non-monotonic transform. Black points show observations.

Effective sampling efficiency is about 1.7%.
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Summary

• Possibly many local minima in posterior pdf for parameter

estimation in porous media.

• If iterate long enough, IES generally converges to a single

minima (but often a “good one”).

• Hybrid IES has much greater diversity, but includes minima

with low probability mass.

• Importance weighting of particles from hybrid-IES improves

forecasts.
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Ensemble collapse?
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Very small spread of data predictions does not imply “collapse” of

the ensemble of model realizations.
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