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Hawkes process for excitation/influence network

• The occurrences of an event increases the probability of the occurrences
of the subsequent events

• Either through self-excitation or by influencing other nodes in the net-
work, or both

• A Hawkes-process is a conventional model for this type of network



Continuous-time Hawkes process: Time-stamp data

• Hawkes process: Conditional intensity process

λ(t) = µ+
∑
j:tj<t

g(t−tj; Θ) lim
h→0+

1

h
P (Nt+h −Nt = 1 | Ht) =: λ(t)

– Nt: a counting process

– tj: time of event (i.e. timestamp) and HT := {tj|tj < T}
– µ > 0: baseline

– g(τ ): Excitation kernel parameterized by Θ

• Poisson process: g(τ ) := 0

• Exponential decay kernel: g(τ ) := αe−βτ
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• m-dimensional Hawkes process: binding m Hawke processes together

λk(t) = µk +

m∑
i=1

∑
j:tij<t

Kik(t− tij; Θik), k = 1, . . . ,m.

• Exponential decay: Kik(τ ) = αike
−βikτ

• Main interest: αik = influence of the i-node on the k-node.



Connection with Granger causality

• There is a connection between the (multivariate) Hawkes process (or in-
fluence) network and the Granger’s causality: if the process j “Granger-
causes” the process i, then the past events of the process j should contain
information that helps to predict the events of the process i beyond the
information contained in the past event of the process i alone.

• Node i does not “Granger-cause” Node j if and only if αij = 0 [Eichler
et al. 2016]



Maximum likelihood estimate (MLE)

• But evaluating the likelihood can be expensive (for a large batch of data
and large m)

L(Θ) = −
N∑
i=1

log λsi(ti) +

m∑
k=1

∫ T

0

λk(t)dt

• MM: “Majorisation-minimisation” technique

• Main idea: Iteratively minimise a “tight upper bound” (surrogate) func-
tion that should be easier to solve

f (xn) ≤ Q(xn | xn−1) ≤ Q(xn−1 | xn−1) = f (xn−1)

• Expectation Maximization (EM): usually employed the branching pro-
cess
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Hawkes process driven by count data

• How do we deal with a time-series of count data?

∆N i
k : no. of events in an interval (τk−1, τk] of the process i

• Use the discrete version of Hawkes: λi
k is constant in (τk−1, τk]

• e.g. Exponential decay

λi
k+1 = µi + (λi

k − µi)(1− βiδt) +

m∑
j=1

αij∆N j
k

λi
k+1 = µi +

m∑
j=1

k−1∑
l=1

(
βi
)k−l−1

αij∆N j
k

• As (τk−1, τk] =: δ → 0, the equilibrium mean and variance is the same as
the continuous version



• Learning the (weighted) network αij from count data

• αij has the same interpretation as the time-stamp data

• Aims: Develop a scalable approach for the (approximate) inference of
an influence network.



MM/EM framework

• A very generic form of EM for state-space modelling is well-known.

• Maximize (marginal) likelihood function

θ̂ := argmaxθ∈Θ log

∫
p (x0:K,∆N1:K | θ) dx0:K.

• E-step: Set up a tight lower-bound (or surrogate) function for maximiza-
tion

Q
(
θ; θ(κ)

)
=

∫
p
(
x0:K | ∆N1:K, θ

(κ)
)
log p (x0:K,∆N1:K | θ) dx0:K

= E [log p (x0:K,∆N1:K | θ)] .
which represents the E-step of the EM algorithm.

• M-step: Solve the maximization problem

θ(κ+1) := argmax
θ∈Θ

Q
(
θ; θ(κ)

)
.



• Under the (first-order) Markovian assumption, we can decompose the
surrogate function Q

(
θ, θ(κ)

)
by

Q
(
θ, θ(κ)

)
= Q0

(
θ, θ(κ)

)
+Qx

(
θ, θ(κ)

)
+Q∆N

(
θ, θ(κ)

)
,

Q0

(
θ, θ(κ)

)
= E [log p (x0 | θ)] ,

Qx

(
θ, θ(κ)

)
=

K∑
k=1

E [log p (xk | xk−1,∆N1:K, θ)] ,

Q∆N

(
θ, θ(κ)

)
=

K∑
k=1

E [log p (∆Nk | xk, θ)] .

• If we can sample from p
(
x0:K | ∆N1:K, θ

(κ)
)
, we can then estimate all

the expectations using the sample paths

• It can be computationally infeasible for a large-scale problem



• Example: Log-Gaussian Cox process (LGCP) on a small network

xik+1 =

(1− ηi)xik + ηi
∑
j ̸=i

xj

 (1− ωi
1δt) + ωi

1µ
jδt + ϵi

√
δtζk,

gik+1 = (1− ωi
2δt)g

i
k +

m∑
j=1

αij∆N j
k ,

λi
k+1 = exp(xik+1) + gik+1,

• E-Step: Run forward-filter backwards-smoother on x and g; hence λ.

• Bootstrap particle filter with Nakano’s resampling scheme

• Backward simulation smoother (BSS)

• M-step: Parameter optimisation with constraints
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• The algorithm converges to the true network given a long enough se-
quence of data

• The MM algorithm can be derived for the exponential decay model[NS,DL,MS:
in preparation], no need to sample p

(
x0:K | ∆N1:K, θ

(κ)
)
. A tight upper

bound function (for each node) is



Q(θ | θ(n)) = −
K∑
k=0

Qk(θ | θ(n))∆Nk +Nµ +

m∑
j=1

HjN j,

where

Hj =

(
αj
)(n)

2
(
1 + (γj)(n)

)(1 + γj)2 +
2
(
1 +

(
γj
)(n))

(αj)(n)
(αj)2,

N j = ∆N j
1 + . . . +∆N j

K−2,

Qk(θ | θ(n)) := −µ(n)

λ
(n)
k

log

(
λ
(n)
k

µ(n)
µ

)
−

k−1∑
l=0

m∑
j=1

ϕ
(n)
klj

λ
(n)
k

log

(
ϕ
(n)
klj

λ
(n)
k

ϕklj

)
,

where ϕklj := αj(γj)k−l−1∆N j
k .



(Approximate) Filtering/Sequential Monte Carlo

• Using filtering to estimate parameters

• Allowing parameters to be “states” in a state-space model

• Recursively sampling p(Θt | Ht)

• The likelihood is a Poisson distribution.

• Approximate filter can be easily developed for the normal prior



• Extended-Poisson Kalman filter (ExPKF): second-order approxima-
tion [NS et. al. 2019]

P−1
k = P−1

k|k−1 +

m∑
j=1

[(
∂ log λj

k

∂Θk

)(
∂ log λj

k

∂Θk

)T

λj
k∆tk

− (∆N j
k − λj

k∆tk)
∂2 log λj

k

∂Θ2
k

]
Θ̄k = Θ̄k|k−1 +Pk

C∑
j=1

[(
∂ log λj

k

∂Θk

)
(∆N j

k − λj
k∆tk)

]
,

• More Efficient with the rank-1 approximation:
(

∂ log λ
j
k

∂θk

)(
∂ log λ

j
k

∂θk

)T

=

−∂2 log λ
j
k

∂θ2k

P−1
k = P−1

k|k−1 +

m∑
j=1

hjh
T
j hj =

√
∆N j

k

(
∂ log λj

k

∂θk

)



• Ensemble-based filtering: motivated by Craig Bishop’s GIGG-EnKF
(2016). The update has two stages:

1. Update λ
i,(s)
k for all i: consistent with Poisson-gamma conjugacy

– Need a new mean ⟨λa⟩ and relative variance P a
r = P a/⟨λa⟩2

⟨λa⟩ = ⟨λ⟩ + ⟨λ⟩
P−1
r + ⟨λ⟩δt

(∆N − ⟨λ⟩δt)

(P a
r )

−1 = P−1
r + yo

– Move/update the ensemble of λ using a stochastic equation

λ(s),a − λ̄a

λ̄a
=

λ(s) − λ̄

λ̄
+

Pr

Pr + (∆N)−1

[
∆N

(s)
e −∆N̄e

∆N̄e
− λ(s) − λ̄

λ̄

]
,

where ∆N
(s)
e is independently drawn from a gamma distribution

with mean ∆N and variance ∆N 2 for i = 1 . . . ,M and its ensemble
mean is denoted by ∆N̄e. [NS,DL,MS: CSDA 2019,2022]

2. Ensemble Kalman Filter (EnKF): update Θ
j,(s)
k taking λ

i,(s)
k as “obser-

vation”



• Checking sampling performance:



• Checking sampling performance:



• Experiment: Log-Gaussian Cox process (LGCP)

xk+1 =xk − ω1(xk − µ)δt + σ
√
δtZk Zk ∼ N(0, 1)

λk+1 =exp(xk+1) + (1− ω2δt)(λk − exp(xk)) + θyk,

• Θk = [µ, ω1, ω2, θ]

• Difficult to estimate/track σ (same issue as EnKF?)

• Metropolis Adjusted Langevin algorithm (MALA) was used for this prob-
lem in [Mohler 14]



• Network detection: Perfect model test

• Network of multiple Hawkes processes connected through mutual exci-
tation

• Discrete-time dynamic model

λj
k+1 = µj + (λj

k − µj)(1− βjδt) +

m∑
i=1

αij∆N j
k .

• “Large” network of 300 nodes

• Assume no prior knowledge of underlying structure; hence estimating
3002 links!

• Apply EnPGF





• Real-world Email data:

• Email communicated by 22 anonymous volunteers May 2010 to June
2011 (7988 emails in total)
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• Test data: use only the number of sending emails per 1 minute

• Results: uncertainty for parameters



• Ensemble mean of the network
Network core
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• Uncertainty of ranking

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22

Rank

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

C
e
ll

In degree

0

10

20

30

40

50

60

70

80

90

100

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22

Rank

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

Out degree

0

10

20

30

40

50

60

70

80

90

100

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22

Rank

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

Betweeness

0

5

10

15

20

25

30

35

40

45

50



Conclusion

• Batch DA:

• EM is powerful but require sampling from smoother distribution

• MM algorithm can be developed for the exponential decay kernel and
does not require a smoothed path.

• Sequential DA:

• ExPKF requires Hessian and probably the rank-one approximation for
efficiency

• EnPGF is more “convenient” (no Hessian required)


