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A Map for This Talk

> notation, the Kalman filter (KF), and the ensemble Kalman filter (EnKF)

> previous results for work on error in the EnKF

> two tools: an optimal linear transformation & results for "tall, skinny” random
matrices

> sampling error in the EnKF for small ensemble size



Preliminaries

We wish to estimate the state x given observations y.

x = discretized representation of atmosphere or other system

y = concatenation of available measurements of the system
N, = dim x, N, = dimy

[We can also concatenate different times into x and y. All results today will apply to that case too.]



The Kalman Filter

Given: x ~ N(x/,P), y=Hx+¢, e~ N(0,R).
Then x|y ~ N(x% P%), where

x* = x/ + K(y — Hx/),
P“= (I - KH)P,

K=PH'(HPH' +R)™!



The Ensemble Kalman Filter (EnKF)

Work with forecast, analysis ensembles instead of P, P

> storage and computations are feasible for ensemble size N, = 100



The Ensemble Kalman Filter (EnKF)

Work with forecast, analysis ensembles instead of P, P

> storage and computations are feasible for ensemble size N, = 100

Approximate covariances in KF by sample covariances (evensen 1004)
> P, PHY, HPH' estimated from ensemble of forecasts at each analysis time

> generate ensemble of analyses, consistent with KF update



Ensemble Notation

Begin from {x’, ¢ =1,..., N.}, an ensemble drawn from p(x).
Ne
)A(:Ne_lzxz, ox" = x* — X
i=1

X =(N,—1)"1/2 ox'y ..., ox™e]

Ne
P=XX"=(N,—-1)"! Z Sxioxt
i=1



EnKF Update Equations

EnKF is the KF with P replaced by P:

The analysis ensemble satisfies

[For "stochastic” EnKFs, this form of P” holds for expectation over realizations of the algorithm]



Analysis Errors for the EnKF

For the KF, expected squared error of x% is given by
PY=cov(x) = F ((x — x%)(x — xa)T)

The EnKF estimate of the expected squared analysis errors is

and its analysis mean x“ has expected squared errors:

A= (l, — KH)P(l, — KH)" + KRK



Tool #1: Optimal Linear Transformation

Helpful to work in the transformed coordinates [snyder and Hakim 2022]:
X/ — VTP_l/QX, y/ — UTR—l/Qy,

where columns of U and V contain singular vectors of

~

H =R Y2HPY? = yAV?



Simplifications from Optimal Coordinates

In the transformed variables, KF is very simple
Covariances are identity matrices: x' ~ N(x'/ 1,), e~ N(0,1,).

Observation operator is diagonal: y' = Ax" +¢€, i.e., y. = Nz + €;.
Call \; the ith canonical observation operator (COO).

Gain is (rectangular) diagonal:
K:AT(AAT—I—Iy)_l, l.e., Kz:)\z/()\g_|_1)
Updated (posterior) covariance is diagonal:

P =1, — AT(MT +1,) A, e, var(afly) = 1~ A2/(A2 + 1),



Importance of the COOs

The update depends only on the COOs {\;, 2 =1,..., N}.

Properties of the update that are independent of linear transformations (such as
those related to information) are completely characterized by the COOs:

> degrees of freedom for signal (rodgers 2000)
mutual information of state and observations (Rodgers 2000, xu 2007)
conditioning of minimization, for either “B” or “R" preconditioning (courtier 1997)

minimal ensemble size required for particle filters (snyder et al 2008)

\YZRRN VAR VAR V/

Optlmal |OW—rank apprOXimationS to update (Spantini et al 2015, Auligné et al 2016, Bousserez and

Henze 2018, Zupanski 2021)



EnKF in Optimal Coordinates

X" = x+ K(y — Ax)

P' = (I, — KAP

K=PAT(APAT +1,)7L.



EnKF in Optimal Coordinates

X" = x+ K(y — AX)

A

P' = (I, — KAP

K=PAT(APAT +1,)7L.

And,
T

A=(l,— KA, — KN +KK .






Sampling Error in the EnKF

Sample covariances have error of O(Ne_l/z)

Sampling error is fundamental limitation on EnKF
> sample covariance matrices are rank deficient (“the rank problem™)
> where correlations are small, covariances are swamped by noise

> How do such errors propagate through the algorithm?



An easy example:P=R=H =1
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Sampling Error in the EnKF

Previous studies

>

EnKF biased toward overconfidence: posterior covariance is too small

(“in-breeding”, Houtekamer and Mitchell 1998; also van Leeuwen 1999)

expansions for small sampling error, implicitly considering large ensembles

(van Leeuwen 1999, Sacher and Bartello 2007)
analysis or examples for scalar state (whitaker and Hamill 2002, Sacher and Bartello 2007)

analysis of pairwise update, i.e. single ob, single state variable

(Anderson 2007 and sequels)
ensemble size giving bounded error when H = | (Furrer and Bengtsson 2007)

explicit expression for p([|x® — X“[|?) (Kovalenko et al 2011)



Why Revisit EnKF Sampling Error?

> Seek explicit results for small ensembles, high-dimensional state and obs

> Clarify relative roles of state dimension, obs dimension, details of obs network



Tool #2: A High-Dimensional Approximation

Let Z = AX. The key approximation is

b2

Z'7 ~
N, —1

N
(le = N.7'1), with 5> = A7,
1=1

When valid, Z* Z acts approximately as a scalar multiple of the identity

(at least for "zero mean” vectors whose components sum to zero)



Tool #2: A High-Dimensional Approximation

Let Z = AX. The key approximation is

b2

ZTZ%Ne_l(Ie—

N
N 1), with b= A7
1=1

When valid, Z* Z acts approximately as a scalar multiple of the identity

(at least for "zero mean” vectors whose components sum to zero)

Heuristic from random-matrix lit: Tall matrices are isometries (e.g. Vershynin 2012)
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Intuition for approximation:

(ZTZ)Z-J- is inner product of ¢th and jth perturbations (in obs space). Inner products
are sums over many terms and become less variable when N is large.
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Tool #2: A High-Dimensional Approximation

Intuition for approximation:

(ZTZ)Z-J- is inner product of ¢th and jth perturbations (in obs space). Inner products
are sums over many terms and become less variable when N is large.

More rigorously,
N
var(Z'2Z);; o< ¢*/(N, — 1)?,  where ¢* = Z A4
i=1

so elementwise approximation holds if ¢?/b? is small.

Think of b*/c* as an effective dimension: equals IV if \; = const and equals 1 in
limit that A\ dominates sum.



An ldealized Example

1D spatial example: homog. prior covariance + point obs at random locations
Consider 100 observations with iid errors ~ N(O, 1)

o7 \7~A(f/ﬂ\\ NAT ‘7/

spatial location



An ldealized Example

COOs when state has long, medium, or short spatial correlations
dimensions are 4.43, 14.4, and 33, respectively)
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An ldealized Example

Histograms for diagonal (left) and off-diagonal (right) elements of Z*Z

3



Tool #2 (cont.)

Also need eigenvalues of Z*'Z to cluster around 5% = b?/(N, — 1).

(The approximation, when vaild, says that every direction in the ensemble subspace is equivalent and carries a variance of 52.)

That clustering requires N, small compared to the effective dimension, in addition
to large effective dimension. (see Marchenko and Pastur 1967)



An ldealized Example

Maximum and minimum eigenvalues of Z*'Z as a function of N..
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The Effects of Sampling Error

Now ready to apply the tools, i.e. write EnKF in optimal coordinates and apply
approximation of Z*'Z. Lots of good things happen.

Let 3% = b%*/(N, — 1) and consider EnKF gain as an example:

K=xz"zz" +1,)" L.
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The Effects of Sampling Error

Now ready to apply the tools, i.e. write EnKF in optimal coordinates and apply
approximation of Z*'Z. Lots of good things happen.

Let 3% = b%*/(N, — 1) and consider EnKF gain as an example:

K=xz"zz" +1,)" L.

(zZ" +1)(aZZ" +1) =1, = a=—-(B*+1)"!

K =XZ"(aZZ" +1,) = X(ap?2" +27) = (% + 1)"1xZ7



Effects on Mean Update

Obs-space analysis increment for mean is then
AX*—%x) = (B2+1)ZZ" (y — AX)
(8% +1)ZZ' Za
BH(B*+1)" ' Za (1)

Q

Only projection of y — Ax onto ensemble subspace matters to increment.

Gain in ensemble subspace is 5?/(8° + 1), so analysis fits that projection of obs
almost exactly



Effects on EnKF Analysis Ensemble

Continuing with similar manipulations leads to

P =(32+1)"'P

EnKF retains little analysis variance—when N/N, is large, 3% will be large unless
the obs are uniformative or redundant (COOs small)

Consider \; = 1 (as in case with P = H = R =1). Then EnKF analysis reduces
variance by factor of approximately N./N, while KF reduces by factor of 1/2.



Effects on Analysis Errors

Finally, using the approximation for Z* Z, the analysis-error covariance becomes
A=1,—(8°+1)"" (I3ATA + ATAI5) + (B2 + 1) 7282 +7YP,
whose diagonal entries are

1+ (B2+1)2(V*+62-2(82+ DA pis, i <N
Qg5 —
14+ (82 +1)72 (v* + 82) pis i >N

Note v = (N, — 1)71 3" A%



Effects on Analysis Errors

Finally, using the approximation for Z* Z, the analysis-error covariance becomes
A=1,— (52 + 1) (PATA+ ATAP) + (52 +1)72(8% +71)P.
whose diagonal entries are

QHF+W”H>%%+ﬁ—%W+umm%i§N
T+ (B2 D)2 (v B?) pa i >N
Note v* = (N, — 1)71 Y \%

a;; always increases, relative to the prior variance, in unobserved directions.
In observed directions, a;; is smaller than prior variance if \; is big enough:

| ,y4_|_52
Ai > 2(82+1)




Approximation Accuracy

Return to simple spatial example, with length scale giving effective dimension ~33

Check approximation against actual EnKF results



Approximation Accuracy
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black: EnKF results, blue: approximation, gray: prior; solid: squared analysis error, dashed: analysis variance



Summary & Discussion




Summary & Discussion

Sampling error in EnKF
> explicit results for N, N,,, N > N,
> leverage: “optimal’ coordinates + approx. for tall, thin random matrices

> sampling-error effects fully determined by COOs, {\;, i =1,..., N}



Summary & Discussion

Sampling error in EnKF

Covariance localization vs inflation
> overconfidence of EnKF often envisioned as problem that slowly accumulates
. . . Aa’ n » »
> in fact, underestimation of A by P can be catastrophic in single update

> localization is essential for practical EnKF



Summary & Discussion

Sampling error in EnKF
Covariance localization vs inflation

Additional interesting directions
> quantify COOs for, say, global NWP
> estimate COOs, then use those estimates to modify algorithm

> role of cross validation (e.g., “double” EnKF)



Role of Gaussianity

p(x), p(€) are not always Gaussian, and y may depend nonlinearly on x.
.. . true of all practical applications of the EnKF
In that case,

> interpret KF eqns as best linear unbiased estimator (BLUE)
> only assumptions are existence of F(x), E(y), cov(x), cov(y), and cov(x,y)

> all results on sampling error here still hold



