Sampling error in the ensemble Kalman filter for small ensembles and high-dimensional states

\triangleright Chris Snyder, NSF NCAR, Boulder CO

A Map for This Talk

\triangleright notation, the Kalman filter (KF), and the ensemble Kalman filter (EnKF)
\triangleright previous results for work on error in the EnKF
\triangleright two tools: an optimal linear transformation \& results for "tall, skinny" random matrices
\triangleright sampling error in the EnKF for small ensemble size

Preliminaries

We wish to estimate the state \mathbf{x} given observations \mathbf{y}.
$\mathbf{x}=$ discretized representation of atmosphere or other system $\mathbf{y}=$ concatenation of available measurements of the system

$$
N_{x}=\operatorname{dim} \mathbf{x}, \quad N_{y}=\operatorname{dim} \mathbf{y}
$$

[We can also concatenate different times into \mathbf{x} and \mathbf{y}. All results today will apply to that case too.]

The Kalman Filter

Given: $\mathbf{x} \sim N\left(\mathbf{x}^{f}, \mathbf{P}\right), \quad \mathbf{y}=\mathbf{H} \mathbf{x}+\epsilon, \quad \epsilon \sim N(0, \mathbf{R})$.
Then $\mathbf{x} \mid \mathbf{y} \sim N\left(\mathbf{x}^{a}, \mathbf{P}^{a}\right)$, where

$$
\begin{gathered}
\mathbf{x}^{a}=\mathbf{x}^{f}+\mathbf{K}\left(\mathbf{y}-\mathbf{H} \mathbf{x}^{f}\right), \\
\mathbf{P}^{a}=(\mathbf{I}-\mathbf{K H}) \mathbf{P}, \\
\mathbf{K}=\mathbf{P H}^{T}\left(\mathbf{H} \mathbf{P} \mathbf{H}^{T}+\mathbf{R}\right)^{-1}
\end{gathered}
$$

The Ensemble Kalman Filter (EnKF)

Work with forecast, analysis ensembles instead of $\mathbf{P}, \mathbf{P}^{a}$
\triangleright storage and computations are feasible for ensemble size $N_{e}=100$

The Ensemble Kalman Filter (EnKF)

Work with forecast, analysis ensembles instead of $\mathbf{P}, \mathbf{P}^{a}$
\triangleright storage and computations are feasible for ensemble size $N_{e}=100$

Approximate covariances in KF by sample covariances (Evensen 1994)
$\triangleright \mathbf{P}, \mathbf{P H}^{T}, \mathbf{H P} \mathbf{H}^{T}$ estimated from ensemble of forecasts at each analysis time
\triangleright generate ensemble of analyses, consistent with KF update

Ensemble Notation

Begin from $\left\{\mathbf{x}^{i}, i=1, \ldots, N_{e}\right\}$, an ensemble drawn from $p(\mathbf{x})$.

$$
\begin{array}{r}
\hat{\mathbf{x}}=N_{e}^{-1} \sum_{i=1}^{N_{e}} \mathbf{x}^{i}, \quad \delta \mathbf{x}^{i}=\mathbf{x}^{i}-\hat{\mathbf{x}} \\
\mathbf{X}=\left(N_{e}-1\right)^{-1 / 2}\left[\delta \mathbf{x}^{1}, \ldots, \delta \mathbf{x}^{N_{e}}\right] \\
\hat{\mathbf{P}}=\mathbf{X X}^{T}=\left(N_{e}-1\right)^{-1} \sum_{i=1}^{N_{e}} \delta \mathbf{x}^{i} \delta \mathbf{x}^{i^{T}}
\end{array}
$$

EnKF Update Equations

EnKF is the KF with \mathbf{P} replaced by $\hat{\mathbf{P}}$:

$$
\begin{gathered}
\hat{\mathbf{x}}^{a}=\hat{\mathbf{x}}+\hat{\mathbf{K}}(\mathbf{y}-\mathbf{H} \hat{\mathbf{x}}), \\
\hat{\mathbf{K}}=\hat{\mathbf{P}} \mathbf{H}^{T}\left(\mathbf{H} \hat{\mathbf{P}} \mathbf{H}^{T}+\mathbf{R}\right)^{-1}
\end{gathered}
$$

The analysis ensemble satisfies

$$
\hat{\mathbf{P}}^{a}=(\mathbf{I}-\hat{\mathbf{K}} \mathbf{H}) \hat{\mathbf{P}} .
$$

[For "stochastic" EnKFs, this form of $\hat{\mathbf{P}}^{a}$ holds for expectation over realizations of the algorithm]

Analysis Errors for the EnKF

For the KF , expected squared error of \mathbf{x}^{a} is given by

$$
\mathbf{P}^{a}=\operatorname{cov}(\mathbf{x})=E\left(\left(\mathbf{x}-\mathbf{x}^{a}\right)\left(\mathbf{x}-\mathbf{x}^{a}\right)^{T}\right)
$$

The EnKF estimate of the expected squared analysis errors is

$$
\hat{\mathbf{P}}^{a}=\left(\mathbf{I}_{x}-\hat{\mathbf{K}} \mathbf{H}\right) \hat{\mathbf{P}},
$$

and its analysis mean $\hat{\mathbf{x}}^{a}$ has expected squared errors:

$$
\mathbf{A}=\left(\mathbf{I}_{x}-\hat{\mathbf{K}} \mathbf{H}\right) \mathbf{P}\left(\mathbf{I}_{x}-\hat{\mathbf{K}} \mathbf{H}\right)^{T}+\hat{\mathbf{K}} \mathbf{R} \hat{\mathbf{K}}
$$

Tool \#1: Optimal Linear Transformation

Helpful to work in the transformed coordinates [Snyder and Hakim 2022]:

$$
\mathbf{x}^{\prime}=\mathbf{V}^{T} \mathbf{P}^{-1 / 2} \mathbf{x}, \quad \mathbf{y}^{\prime}=\mathbf{U}^{T} \mathbf{R}^{-1 / 2} \mathbf{y}
$$

where columns of \mathbf{U} and \mathbf{V} contain singular vectors of

$$
\tilde{\mathbf{H}}=\mathbf{R}^{-1 / 2} \mathbf{H} \mathbf{P}^{1 / 2}=\mathbf{U} \Lambda \mathbf{V}^{T}
$$

Simplifications from Optimal Coordinates

In the transformed variables, KF is very simple
Covariances are identity matrices: $\mathbf{x}^{\prime} \sim N\left(\mathbf{x}^{\prime f}, \mathbf{I}_{x}\right), \quad \epsilon \sim N\left(0, \mathbf{I}_{y}\right)$.
Observation operator is diagonal: $\mathbf{y}^{\prime}=\Lambda \mathbf{x}^{\prime}+\epsilon$, i.e., $y_{i}^{\prime}=\lambda_{i} x_{i}^{\prime}+\epsilon_{i}$. Call λ_{i} the i th canonical observation operator (COO).

Gain is (rectangular) diagonal:

$$
\mathbf{K}=\Lambda^{T}\left(\Lambda \Lambda^{T}+\mathbf{I}_{y}\right)^{-1}, \quad \text { i.e., } K_{i}=\lambda_{i} /\left(\lambda_{i}^{2}+1\right)
$$

Updated (posterior) covariance is diagonal:

$$
\mathbf{P}^{a}=\mathbf{I}_{x}-\Lambda^{T}\left(\Lambda \Lambda^{T}+\mathbf{I}_{y}\right)^{-1} \Lambda, \quad \text { i.e., } \operatorname{var}\left(x_{i}^{\prime} \mid \mathbf{y}^{\prime}\right)=1-\lambda_{i}^{2} /\left(\lambda_{i}^{2}+1\right)
$$

Importance of the COOs

The update depends only on the COOs $\left\{\lambda_{i}, i=1, \ldots, N\right\}$.
Properties of the update that are independent of linear transformations (such as those related to information) are completely characterized by the COOs:
\triangleright degrees of freedom for signal (Rodgers 2000)
\triangleright mutual information of state and observations (Rodgers 2000, Xu 2007)
\triangleright conditioning of minimization, for either "B" or "R" preconditioning (Courtier 1997)
\triangleright minimal ensemble size required for particle filters (Snyder et al 2008)
\triangleright optimal low-rank approximations to update (Spantini et al 2015, Auligné et al 2016, Bousserez and Henze 2018, Zupanski 2021)

EnKF in Optimal Coordinates

$$
\begin{gathered}
\hat{\mathbf{x}}^{a}=\hat{\mathbf{x}}+\hat{\mathbf{K}}(\mathbf{y}-\Lambda \hat{\mathbf{x}}) \\
\hat{\mathbf{P}}^{a}=\left(\mathbf{I}_{x}-\hat{\mathbf{K}} \Lambda\right) \hat{\mathbf{P}} \\
\hat{\mathbf{K}}=\hat{\mathbf{P}} \Lambda^{T}\left(\Lambda \hat{\mathbf{P}} \Lambda^{T}+\mathbf{I}_{y}\right)^{-1} .
\end{gathered}
$$

EnKF in Optimal Coordinates

$$
\begin{gathered}
\hat{\mathbf{x}}^{a}=\hat{\mathbf{x}}+\hat{\mathbf{K}}(\mathbf{y}-\Lambda \hat{\mathbf{x}}) \\
\hat{\mathbf{P}}^{a}=\left(\mathbf{I}_{x}-\hat{\mathbf{K}} \Lambda\right) \hat{\mathbf{P}} \\
\hat{\mathbf{K}}=\hat{\mathbf{P}} \Lambda^{T}\left(\Lambda \hat{\mathbf{P}} \Lambda^{T}+\mathbf{I}_{y}\right)^{-1} .
\end{gathered}
$$

And,

$$
\mathbf{A}=\left(\mathbf{I}_{x}-\hat{\mathbf{K}} \Lambda\right)\left(\mathbf{I}_{x}-\hat{\mathbf{K}} \Lambda\right)^{T}+\hat{\mathbf{K}} \hat{\mathbf{K}}^{T} .
$$

Sampling Error in the EnKF

Sample covariances have error of $O\left(N_{e}^{-1 / 2}\right)$

Sampling error is fundamental limitation on EnKF
\triangleright sample covariance matrices are rank deficient ("the rank problem")
\triangleright where correlations are small, covariances are swamped by noise
\triangleright How do such errors propagate through the algorithm?

An easy example: $\mathbf{P}=\mathbf{R}=\mathbf{H}=\mathbf{I}$

Sampling Error in the EnKF

Previous studies

\triangleright EnKF biased toward overconfidence: posterior covariance is too small ("in-breeding", Houtekamer and Mitchell 1998; also van Leeuwen 1999)
\triangleright expansions for small sampling error, implicitly considering large ensembles (van Leeuwen 1999, Sacher and Bartello 2007)
\triangleright analysis or examples for scalar state (Whitaker and Hamill 2002, Sacher and Bartello 2007)
\triangleright analysis of pairwise update, i.e. single ob, single state variable
(Anderson 2007 and sequels)
\triangleright ensemble size giving bounded error when $\mathbf{H}=\mathbf{I}_{x}$ (Furrer and Bengtsson 2007)
\triangleright explicit expression for $p\left(\left\|\mathbf{x}^{a}-\hat{\mathbf{x}}^{a}\right\|^{2}\right)$ (Kovalenko et al 2011)

Why Revisit EnKF Sampling Error?

\triangleright Seek explicit results for small ensembles, high-dimensional state and obs
\triangleright Clarify relative roles of state dimension, obs dimension, details of obs network

Tool \#2: A High-Dimensional Approximation

Let $\mathbf{Z}=\Lambda \mathbf{X}$. The key approximation is

$$
\mathbf{Z}^{T} \mathbf{Z} \approx \frac{b^{2}}{N_{e}-1}\left(\mathbf{l}_{e}-N_{e}^{-1} \mathbf{1}\right), \quad \text { with } b^{2}=\sum_{i=1}^{N} \lambda_{i}^{2} .
$$

When valid, $\mathbf{Z}^{T} \mathbf{Z}$ acts approximately as a scalar multiple of the identity (at least for "zero mean" vectors whose components sum to zero)

Tool \#2: A High-Dimensional Approximation

Let $\mathbf{Z}=\Lambda \mathbf{X}$. The key approximation is

$$
\mathbf{Z}^{T} \mathbf{Z} \approx \frac{b^{2}}{N_{e}-1}\left(\mathbf{l}_{e}-N_{e}^{-1} \mathbf{1}\right), \quad \text { with } b^{2}=\sum_{i=1}^{N} \lambda_{i}^{2} .
$$

When valid, $\mathbf{Z}^{T} \mathbf{Z}$ acts approximately as a scalar multiple of the identity (at least for "zero mean" vectors whose components sum to zero)

Heuristic from random-matrix lit: Tall matrices are isometries (e.g. Vesshymin 2012)

Tool \#2: A High-Dimensional Approximation

Intuition for approximation:
$\left(\mathbf{Z}^{T} \mathbf{Z}\right)_{i j}$ is inner product of i th and j th perturbations (in obs space). Inner products are sums over many terms and become less variable when N is large.

Tool \#2: A High-Dimensional Approximation

Intuition for approximation:
$\left(\mathbf{Z}^{T} \mathbf{Z}\right)_{i j}$ is inner product of i th and j th perturbations (in obs space). Inner products are sums over many terms and become less variable when N is large.

More rigorously,

$$
\operatorname{var}\left(\mathbf{Z}^{T} \mathbf{Z}\right)_{i j} \propto c^{4} /\left(N_{e}-1\right)^{2}, \quad \text { where } c^{4}=\sum_{i=1}^{N} \lambda_{i}^{4}
$$

so elementwise approximation holds if c^{2} / b^{2} is small.

Tool \#2: A High-Dimensional Approximation

Intuition for approximation:
$\left(\mathbf{Z}^{T} \mathbf{Z}\right)_{i j}$ is inner product of i th and j th perturbations (in obs space). Inner products are sums over many terms and become less variable when N is large.

More rigorously,

$$
\operatorname{var}\left(\mathbf{Z}^{T} \mathbf{Z}\right)_{i j} \propto c^{4} /\left(N_{e}-1\right)^{2}, \quad \text { where } c^{4}=\sum_{i=1}^{N} \lambda_{i}^{4}
$$

so elementwise approximation holds if c^{2} / b^{2} is small.
Think of b^{4} / c^{4} as an effective dimension: equals N if $\lambda_{i}=$ const and equals 1 in limit that λ_{1}^{2} dominates sum.

An Idealized Example

1D spatial example: homog. prior covariance + point obs at random locations Consider 100 observations with iid errors $\sim N(0,1)$

An Idealized Example

COOs when state has long, medium, or short spatial correlations (effective dimensions are 4.43, 14.4, and 33, respectively)

An Idealized Example

Histograms for diagonal (left) and off-diagonal (right) elements of $\mathbf{Z}^{T} \mathbf{Z}$

Tool \#2 (cont.)

Also need eigenvalues of $\mathbf{Z}^{T} \mathbf{Z}$ to cluster around $\beta^{2}=b^{2} /\left(N_{e}-1\right)$.

(The approximation, when vaild, says that every direction in the ensemble subspace is equivalent and carries a variance of β^{2}.)
That clustering requires N_{e} small compared to the effective dimension, in addition to large effective dimension. (See Marchenko and Pastur 1967)

An Idealized Example

Maximum and minimum eigenvalues of $\mathbf{Z}^{T} \mathbf{Z}$ as a function of N_{e}.

The Effects of Sampling Error

Now ready to apply the tools, i.e. write EnKF in optimal coordinates and apply approximation of $\mathbf{Z}^{T} \mathbf{Z}$. Lots of good things happen.

Let $\beta^{2}=b^{2} /\left(N_{e}-1\right)$ and consider EnKF gain as an example:

$$
\hat{\mathbf{K}}=\mathbf{X Z}^{T}\left(\mathbf{Z Z}^{T}+\mathbf{I}_{y}\right)^{-1}
$$

The Effects of Sampling Error

Now ready to apply the tools, i.e. write EnKF in optimal coordinates and apply approximation of $\mathbf{Z}^{T} \mathbf{Z}$. Lots of good things happen.

Let $\beta^{2}=b^{2} /\left(N_{e}-1\right)$ and consider EnKF gain as an example:

$$
\hat{\mathbf{K}}=\mathbf{X} \mathbf{Z}^{T}\left(\mathbf{Z} \mathbf{Z}^{T}+\mathbf{I}_{y}\right)^{-1}
$$

$$
\left(\mathbf{Z} \mathbf{Z}^{T}+\mathbf{I}_{y}\right)\left(a \mathbf{Z} \mathbf{Z}^{T}+\mathbf{I}_{y}\right)=\mathbf{I}_{y} \quad \Rightarrow \quad a=-\left(\beta^{2}+1\right)^{-1}
$$

The Effects of Sampling Error

Now ready to apply the tools, i.e. write EnKF in optimal coordinates and apply approximation of $\mathbf{Z}^{T} \mathbf{Z}$. Lots of good things happen.

Let $\beta^{2}=b^{2} /\left(N_{e}-1\right)$ and consider EnKF gain as an example:

$$
\begin{gathered}
\hat{\mathbf{K}}=\mathbf{X} \mathbf{Z}^{T}\left(\mathbf{Z Z}^{T}+\mathbf{I}_{y}\right)^{-1} . \\
\left(\mathbf{Z} \mathbf{Z}^{T}+\mathbf{I}_{y}\right)\left(a \mathbf{Z} \mathbf{Z}^{T}+\mathbf{I}_{y}\right)=\mathbf{I}_{y} \quad \Rightarrow \quad a=-\left(\beta^{2}+1\right)^{-1} \\
\hat{\mathbf{K}}=\mathbf{X} \mathbf{Z}^{T}\left(a \mathbf{Z} \mathbf{Z}^{T}+\mathbf{I}_{y}\right)=\mathbf{X}\left(a \beta^{2} \mathbf{Z}^{T}+\mathbf{Z}^{T}\right)=\left(\beta^{2}+1\right)^{-1} \mathbf{X} \mathbf{Z}^{T}
\end{gathered}
$$

Effects on Mean Update

Obs-space analysis increment for mean is then

$$
\begin{align*}
\Lambda\left(\hat{\mathbf{x}}^{a}-\hat{\mathbf{x}}\right) & =\left(\beta^{2}+1\right) \mathbf{Z} \mathbf{Z}^{T}(\mathbf{y}-\Lambda \hat{\mathbf{x}}) \\
& =\left(\beta^{2}+1\right) \mathbf{Z} \mathbf{Z}^{T} \mathbf{Z a} \\
& \approx \beta^{2}\left(\beta^{2}+1\right)^{-1} \mathbf{Z a} \tag{1}
\end{align*}
$$

Only projection of $\mathbf{y}-\Lambda \hat{\mathbf{x}}$ onto ensemble subspace matters to increment.
Gain in ensemble subspace is $\beta^{2} /\left(\beta^{2}+1\right)$, so analysis fits that projection of obs almost exactly

Effects on EnKF Analysis Ensemble

Continuing with similar manipulations leads to

$$
\hat{\mathbf{P}}^{a}=\left(\beta^{2}+1\right)^{-1} \hat{\mathbf{P}}
$$

EnKF retains little analysis variance-when N / N_{e} is large, β^{2} will be large unless the obs are uniformative or redundant (COOs small)

Consider $\lambda_{i}=1$ (as in case with $\mathbf{P}=\mathbf{H}=\mathbf{R}=\mathbf{I}$). Then EnKF analysis reduces variance by factor of approximately N_{e} / N, while KF reduces by factor of $1 / 2$.

Effects on Analysis Errors

Finally, using the approximation for $\mathbf{Z}^{T} \mathbf{Z}$, the analysis-error covariance becomes

$$
\mathbf{A}=\mathbf{I}_{x}-\left(\beta^{2}+1\right)^{-1}\left(\hat{\mathbf{P}} \Lambda^{T} \Lambda+\Lambda^{T} \Lambda \hat{\mathbf{P}}\right)+\left(\beta^{2}+1\right)^{-2}\left(\beta^{2}+\gamma^{4}\right) \hat{\mathbf{P}}
$$

whose diagonal entries are

$$
a_{i i}= \begin{cases}1+\left(\beta^{2}+1\right)^{-2}\left(\gamma^{4}+\beta^{2}-2\left(\beta^{2}+1\right) \lambda_{i}^{2}\right) \hat{p}_{i i}, & i \leq N \\ 1+\left(\beta^{2}+1\right)^{-2}\left(\gamma^{4}+\beta^{2}\right) \hat{p}_{i i} & i>N\end{cases}
$$

Note $\gamma^{4}=\left(N_{e}-1\right)^{-1} \sum \lambda^{4}$.

Effects on Analysis Errors

Finally, using the approximation for $\mathbf{Z}^{T} \mathbf{Z}$, the analysis-error covariance becomes

$$
\mathbf{A}=\mathbf{I}_{x}-\left(\beta^{2}+1\right)^{-1}\left(\hat{\mathbf{P}} \Lambda^{T} \Lambda+\Lambda^{T} \Lambda \hat{\mathbf{P}}\right)+\left(\beta^{2}+1\right)^{-2}\left(\beta^{2}+\gamma^{4}\right) \hat{\mathbf{P}}
$$

whose diagonal entries are

$$
a_{i i}= \begin{cases}1+\left(\beta^{2}+1\right)^{-2}\left(\gamma^{4}+\beta^{2}-2\left(\beta^{2}+1\right) \lambda_{i}^{2}\right) \hat{p}_{i i}, & i \leq N \\ 1+\left(\beta^{2}+1\right)^{-2}\left(\gamma^{4}+\beta^{2}\right) \hat{p}_{i i} & i>N\end{cases}
$$

Note $\gamma^{4}=\left(N_{e}-1\right)^{-1} \sum \lambda^{4}$.
$a_{i i}$ always increases, relative to the prior variance, in unobserved directions. In observed directions, $a_{i i}$ is smaller than prior variance if λ_{i} is big enough:

$$
\lambda_{i}>\frac{\gamma^{4}+\beta^{2}}{2\left(\beta^{2}+1\right)}
$$

Approximation Accuracy

Return to simple spatial example, with length scale giving effective dimension ≈ 33
Check approximation against actual EnKF results

Approximation Accuracy

black: EnKF results, blue: approximation, gray: prior; solid: squared analysis error, dashed: analysis variance

Summary \& Discussion

Summary \& Discussion

Sampling error in EnKF
\triangleright explicit results for $N_{x}, N_{y}, N \gg N_{e}$
\triangleright leverage: "optimal" coordinates + approx. for tall, thin random matrices
\triangleright sampling-error effects fully determined by COOs, $\left\{\lambda_{i}, i=1, \ldots, N\right\}$

Summary \& Discussion

Sampling error in EnKF
Covariance localization vs inflation
\triangleright overconfidence of EnKF often envisioned as problem that slowly accumulates
\triangleright in fact, underestimation of \mathbf{A} by $\hat{\mathbf{P}}^{a}$ can be catastrophic in single update
\triangleright localization is essential for practical EnKF

Summary \& Discussion

Sampling error in EnKF
Covariance localization vs inflation
Additional interesting directions
\triangleright quantify COOs for, say, global NWP
\triangleright estimate COOs, then use those estimates to modify algorithm
\triangleright role of cross validation (e.g., "double" EnKF)

Role of Gaussianity

$p(\mathbf{x}), p(\epsilon)$ are not always Gaussian, and \mathbf{y} may depend nonlinearly on \mathbf{x}.
. . . true of all practical applications of the EnKF
In that case,
\triangleright interpret KF eqns as best linear unbiased estimator (BLUE)
\triangleright only assumptions are existence of $E(\mathbf{x}), E(\mathbf{y}), \operatorname{cov}(\mathbf{x}), \operatorname{cov}(\mathbf{y})$, and $\operatorname{cov}(\mathbf{x}, \mathbf{y})$
\triangleright all results on sampling error here still hold

