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A Map for This Talk

. notation, the Kalman filter (KF), and the ensemble Kalman filter (EnKF)

. previous results for work on error in the EnKF

. two tools: an optimal linear transformation & results for ”tall, skinny” random
matrices

. sampling error in the EnKF for small ensemble size
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Preliminaries

We wish to estimate the state x given observations y.

x = discretized representation of atmosphere or other system

y = concatenation of available measurements of the system

Nx = dim x, Ny = dim y

[We can also concatenate di↵erent times into x and y. All results today will apply to that case too.]
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The Kalman Filter

Given: x ⇠ N(xf ,P), y = Hx+ ✏, ✏ ⇠ N(0,R).

Then x|y ⇠ N(xa,Pa), where

x
a = x

f +K(y�Hx
f),

P
a = (I�KH)P,

K = PH
T (HPH

T + R)�1
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The Ensemble Kalman Filter (EnKF)

Work with forecast, analysis ensembles instead of P, Pa

. storage and computations are feasible for ensemble size Ne = 100
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The Ensemble Kalman Filter (EnKF)

Work with forecast, analysis ensembles instead of P, Pa

. storage and computations are feasible for ensemble size Ne = 100

Approximate covariances in KF by sample covariances (Evensen 1994)

. P, PHT , HPH
T estimated from ensemble of forecasts at each analysis time

. generate ensemble of analyses, consistent with KF update
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Ensemble Notation

Begin from {xi, i = 1, . . . , Ne}, an ensemble drawn from p(x).

x̂ = Ne
�1

NeX

i=1

x
i
, �x

i = x
i � x̂

X = (Ne � 1)�1/2
⇥
�x

1
, . . . , �x

Ne
⇤

P̂ = XX
T = (Ne � 1)�1

NeX

i=1

�x
i
�x

iT
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EnKF Update Equations

EnKF is the KF with P replaced by P̂:

x̂
a = x̂+ K̂(y�Hx̂),

K̂ = P̂H
T (HP̂H

T + R)�1

The analysis ensemble satisfies

P̂
a
= (I� K̂H)P̂.

[For ”stochastic” EnKFs, this form of P̂
a
holds for expectation over realizations of the algorithm]
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Analysis Errors for the EnKF

For the KF, expected squared error of xa is given by

P
a = cov(x) = E

�
(x� x

a)(x� x
a)T

�

The EnKF estimate of the expected squared analysis errors is

P̂
a
= (Ix � K̂H)P̂,

and its analysis mean x̂
a has expected squared errors:

A = (Ix � K̂H)P(Ix � K̂H)T + K̂RK̂

12



Tool #1: Optimal Linear Transformation

Helpful to work in the transformed coordinates [Snyder and Hakim 2022]:

x
0 = V

T
P

�1/2
x, y

0 = U
T
R

�1/2
y,

where columns of U and V contain singular vectors of

H̃ = R
�1/2

HP
1/2 = U⇤VT
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Simplifications from Optimal Coordinates

In the transformed variables, KF is very simple

Covariances are identity matrices: x0 ⇠ N(x0f , Ix), ✏ ⇠ N(0, Iy).

Observation operator is diagonal: y0 = ⇤x0 + ✏, i.e., y0i = �ix
0
i + ✏i.

Call �i the ith canonical observation operator (COO).

Gain is (rectangular) diagonal:

K = ⇤T (⇤⇤T + Iy)�1, i.e., Ki = �i/(�2
i + 1).

Updated (posterior) covariance is diagonal:

P
a = Ix � ⇤T (⇤⇤T + Iy)�1⇤, i.e., var(x0

i|y0) = 1� �
2
i/(�

2
i + 1).
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Importance of the COOs

The update depends only on the COOs {�i, i = 1, . . . , N}.

Properties of the update that are independent of linear transformations (such as
those related to information) are completely characterized by the COOs:

. degrees of freedom for signal (Rodgers 2000)

. mutual information of state and observations (Rodgers 2000, Xu 2007)

. conditioning of minimization, for either “B” or “R” preconditioning (Courtier 1997)

. minimal ensemble size required for particle filters (Snyder et al 2008)

. optimal low-rank approximations to update (Spantini et al 2015, Auligné et al 2016, Bousserez and

Henze 2018, Zupanski 2021)
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EnKF in Optimal Coordinates

x̂
a = x̂+ K̂(y� ⇤x̂)

P̂
a
= (Ix � K̂⇤)P̂

K̂ = P̂⇤T (⇤P̂⇤T + Iy)
�1

.
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EnKF in Optimal Coordinates

x̂
a = x̂+ K̂(y� ⇤x̂)

P̂
a
= (Ix � K̂⇤)P̂

K̂ = P̂⇤T (⇤P̂⇤T + Iy)
�1

.

And,

A = (Ix � K̂⇤)(Ix � K̂⇤)T + K̂K̂
T
.
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Sampling Error in the EnKF

Sample covariances have error of O(Ne
�1/2)

Sampling error is fundamental limitation on EnKF
. sample covariance matrices are rank deficient (“the rank problem”)

. where correlations are small, covariances are swamped by noise

. How do such errors propagate through the algorithm?
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An easy example: P = R = H = I
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Sampling Error in the EnKF

Previous studies
. EnKF biased toward overconfidence: posterior covariance is too small

(“in-breeding”, Houtekamer and Mitchell 1998; also van Leeuwen 1999)

. expansions for small sampling error, implicitly considering large ensembles
(van Leeuwen 1999, Sacher and Bartello 2007)

. analysis or examples for scalar state (Whitaker and Hamill 2002, Sacher and Bartello 2007)

. analysis of pairwise update, i.e. single ob, single state variable
(Anderson 2007 and sequels)

. ensemble size giving bounded error when H = Ix (Furrer and Bengtsson 2007)

. explicit expression for p(||xa � x̂
a||2) (Kovalenko et al 2011)
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Why Revisit EnKF Sampling Error?

. Seek explicit results for small ensembles, high-dimensional state and obs

. Clarify relative roles of state dimension, obs dimension, details of obs network
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Tool #2: A High-Dimensional Approximation

Let Z = ⇤X. The key approximation is

Z
T
Z ⇡ b

2

Ne � 1

�
Ie �Ne

�11
�
, with b

2 =
NX

i=1

�
2
i .

When valid, ZT
Z acts approximately as a scalar multiple of the identity

(at least for ”zero mean” vectors whose components sum to zero)
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Tool #2: A High-Dimensional Approximation

Let Z = ⇤X. The key approximation is

Z
T
Z ⇡ b

2

Ne � 1

�
Ie �Ne

�11
�
, with b

2 =
NX

i=1

�
2
i .

When valid, ZT
Z acts approximately as a scalar multiple of the identity

(at least for ”zero mean” vectors whose components sum to zero)

Heuristic from random-matrix lit: Tall matrices are isometries (e.g. Vershynin 2012)
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Tool #2: A High-Dimensional Approximation

Intuition for approximation:

(ZT
Z)ij is inner product of ith and jth perturbations (in obs space). Inner products

are sums over many terms and become less variable when N is large.
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Tool #2: A High-Dimensional Approximation

Intuition for approximation:

(ZT
Z)ij is inner product of ith and jth perturbations (in obs space). Inner products

are sums over many terms and become less variable when N is large.

More rigorously,

var(ZT
Z)ij / c

4
/(Ne � 1)2, where c

4 =
NX

i=1

�
4
i ,

so elementwise approximation holds if c2/b2 is small.
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Tool #2: A High-Dimensional Approximation

Intuition for approximation:

(ZT
Z)ij is inner product of ith and jth perturbations (in obs space). Inner products

are sums over many terms and become less variable when N is large.

More rigorously,

var(ZT
Z)ij / c

4
/(Ne � 1)2, where c

4 =
NX

i=1

�
4
i ,

so elementwise approximation holds if c2/b2 is small.

Think of b4/c4 as an e↵ective dimension: equals N if �i = const and equals 1 in
limit that �2

1 dominates sum.
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An Idealized Example

1D spatial example: homog. prior covariance + point obs at random locations
Consider 100 observations with iid errors ⇠ N(0, 1)

0 0.2 0.4 0.6 0.8 1

spatial location

-2

0

2

28



An Idealized Example

COOs when state has long, medium, or short spatial correlations (e↵ective
dimensions are 4.43, 14.4, and 33, respectively)
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An Idealized Example

Histograms for diagonal (left) and o↵-diagonal (right) elements of ZT
Z

0 0.5 1 1.5 2

| di |2/b 2

0

1

2

3

d
e
n
si

ty

-1 -0.5 0 0.5 1

di  dj / b 2

30



Tool #2 (cont.)

Also need eigenvalues of ZT
Z to cluster around �

2 = b
2
/(Ne � 1).

(The approximation, when vaild, says that every direction in the ensemble subspace is equivalent and carries a variance of �2.)

That clustering requires Ne small compared to the e↵ective dimension, in addition
to large e↵ective dimension. (See Marchenko and Pastur 1967)
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An Idealized Example

Maximum and minimum eigenvalues of ZT
Z as a function of Ne.
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The E↵ects of Sampling Error

Now ready to apply the tools, i.e. write EnKF in optimal coordinates and apply
approximation of ZT

Z. Lots of good things happen.

Let �2 = b
2
/(Ne � 1) and consider EnKF gain as an example:

K̂ = XZ
T (ZZT + Iy)

�1
.
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The E↵ects of Sampling Error

Now ready to apply the tools, i.e. write EnKF in optimal coordinates and apply
approximation of ZT

Z. Lots of good things happen.

Let �2 = b
2
/(Ne � 1) and consider EnKF gain as an example:

K̂ = XZ
T (ZZT + Iy)

�1
.

(ZZT + Iy)(aZZ
T + Iy) = Iy ) a = �(�2 + 1)�1
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The E↵ects of Sampling Error

Now ready to apply the tools, i.e. write EnKF in optimal coordinates and apply
approximation of ZT

Z. Lots of good things happen.

Let �2 = b
2
/(Ne � 1) and consider EnKF gain as an example:

K̂ = XZ
T (ZZT + Iy)

�1
.

(ZZT + Iy)(aZZ
T + Iy) = Iy ) a = �(�2 + 1)�1

K̂ = XZ
T (aZZT + Iy) = X(a�2

Z
T + Z

T ) = (�2 + 1)�1
XZ

T
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E↵ects on Mean Update

Obs-space analysis increment for mean is then

⇤(x̂a � x̂) = (�2 + 1)ZZT (y� ⇤x̂)

= (�2 + 1)ZZT
Za

⇡ �
2(�2 + 1)�1

Za (1)

Only projection of y� ⇤x̂ onto ensemble subspace matters to increment.

Gain in ensemble subspace is �
2
/(�2 + 1), so analysis fits that projection of obs

almost exactly

36



E↵ects on EnKF Analysis Ensemble

Continuing with similar manipulations leads to

P̂
a
= (�2 + 1)�1

P̂

EnKF retains little analysis variance—when N/Ne is large, �2 will be large unless
the obs are uniformative or redundant (COOs small)

Consider �i = 1 (as in case with P = H = R = I). Then EnKF analysis reduces
variance by factor of approximately Ne/N , while KF reduces by factor of 1/2.
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E↵ects on Analysis Errors

Finally, using the approximation for ZT
Z, the analysis-error covariance becomes

A = Ix � (�2 + 1)�1
⇣
P̂⇤T⇤+ ⇤T⇤P̂

⌘
+ (�2 + 1)�2(�2 + �

4)P̂,

whose diagonal entries are

aii =

(
1 + (�2 + 1)�2

�
�
4 + �

2 � 2(�2 + 1)�2
i

�
p̂ii, i  N

1 + (�2 + 1)�2
�
�
4 + �

2
�
p̂ii i > N

Note �
4 = (Ne � 1)�1

P
�
4.
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E↵ects on Analysis Errors

Finally, using the approximation for ZT
Z, the analysis-error covariance becomes

A = Ix � (�2 + 1)�1
⇣
P̂⇤T⇤+ ⇤T⇤P̂

⌘
+ (�2 + 1)�2(�2 + �

4)P̂,

whose diagonal entries are

aii =

(
1 + (�2 + 1)�2

�
�
4 + �

2 � 2(�2 + 1)�2
i

�
p̂ii, i  N

1 + (�2 + 1)�2
�
�
4 + �

2
�
p̂ii i > N

Note �
4 = (Ne � 1)�1

P
�
4.

aii always increases, relative to the prior variance, in unobserved directions.

In observed directions, aii is smaller than prior variance if �i is big enough:

�i >
�
4 + �

2

2(�2 + 1)
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Approximation Accuracy

Return to simple spatial example, with length scale giving e↵ective dimension ⇡33

Check approximation against actual EnKF results

40



Approximation Accuracy
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Summary & Discussion
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Summary & Discussion

Sampling error in EnKF
. explicit results for Nx, Ny, N � Ne

. leverage: “optimal” coordinates + approx. for tall, thin random matrices

. sampling-error e↵ects fully determined by COOs, {�i, i = 1, . . . , N}

43



Summary & Discussion

Sampling error in EnKF

Covariance localization vs inflation
. overconfidence of EnKF often envisioned as problem that slowly accumulates

. in fact, underestimation of A by P̂
a
can be catastrophic in single update

. localization is essential for practical EnKF
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Summary & Discussion

Sampling error in EnKF

Covariance localization vs inflation

Additional interesting directions
. quantify COOs for, say, global NWP

. estimate COOs, then use those estimates to modify algorithm

. role of cross validation (e.g., “double” EnKF)
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Role of Gaussianity

p(x), p(✏) are not always Gaussian, and y may depend nonlinearly on x.

. . . true of all practical applications of the EnKF

In that case,

. interpret KF eqns as best linear unbiased estimator (BLUE)

. only assumptions are existence of E(x), E(y), cov(x), cov(y), and cov(x, y)

. all results on sampling error here still hold
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