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Did you know that...

OGS



Did you know that...

It’s general,
it’s for everyone,
it’s for you!
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Sampling
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Sampling (a look to the past)

The second-order-exact sampling
Pham 1996, Pham 2001

used in SEIK, ETKF and other square root filters Sl

The covariance P is approximated by a base L and a small symetric matrix A:
P=~LAL'

The sampling matrix X (i.e., the ensemble anomalies) is:
X = sqrt(EnsSize) L S Q,
where S°=A, QQ'=1, Q1-=0.

The sampling matches statistical moments up to order 2:

X1=0, (1/EnsSize) XX =LALT
& 0OGS
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Sampling order

Initial pdf

Model operator
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Model operator

Pdf after evolution
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Sampling order

Model operator

>
Initial pdf Pdf after evolution
2"d_order means: *
“the diagram is exact if |
the model is a *
2"9_order
. polynomial”
Model operator . : .
® ® >
Ensemble Evoluted ensemble
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Sampling (a look to the past)

The second-order-exact sampling
Pham 1996, Pham 2001

used in SEIK, ETKF and other square root filters

The covariance P.iec annravimatad hv 2 haca l _and a emall evimetric matrix A:

Th !
( This sampling method is exact if

the model is a second-order polynomial

The 2:
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Higher order requires more ensemble members

.....

o Shady areas represent a Gaussian
distribution.
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Higher order requires more ensemble members

o Shady areas represent a Gaussian
distribution.

o 3 ensemble members:
2"9-order sampling
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Higher order requires more ensemble members

o Shady areas represent a Gaussian
distribution.
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3"-order sampling




Higher order requires more ensemble members

Shady areas represent a Gaussian
distribution.

3 ensemble members:
2"9-order sampling

4 ensemble members:
3"-order sampling

4 ensemble members in 3D space:
usual 2"%-order sampling
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The high-order sampling idea

S 5
Improved precision NeWI

4 members in 3D by
(2"9-order approximation)
rising order
that project in in the most relevant

PCA components

4 members in 2D
(3"9-order approximation) NO more members

that project in NO higher
computational cost

3 weighted members in 1D
(5""-order approximation)
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Enhance your sampling method
The high-order sampling
Spada et al. 2024
(https://doi.org/10.5194/gmd-2023-170)

used in GHOSH

P=LAL", S2=A
X=LSEQ W,
where W is the diagonal matrix of the ensemble weights,
SL'LS=ED E'is an eigendecomposition with decreasing eigenvalues,
Q _is an orthogonal matrix encoding statistical moments.

The sampling matches statistical moments up to an arbitrary high order
(limited by ensemble size) in the principal error components.
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Twin experiment: SEIK vs GHOSH

Toy model: Lorenz96 (62 variables)

Observations: odd variables only

Observation error: Gaussian noise (standard deviation is 1)

Time between observations: 0.1 to 0.3 time units

Ensemble Size: 15, 31 and 63

Inflation (forgetting factor): 0.51t0 1.0

Experiments: 400 experiments for each configuration, randomly changing
truth, observations and initial conditions, for a total of 66000 tests.
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Twin experiment: SEIK vs GHOSH

e GHOSH always improves RMSE (up
to 70% reduction),

e GHOSH converges for larger intervals
between observations (0.25 and 0.3)

e GHOSH is more stable and needs less
inflation

e GHOSH has no higher computational
cost than SEIK

Very similar results also with the
two-scale Lorenz05 model

OGS
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Realistic 3D test
Setup:

Mediterranean Sea

1-year simulations

1/4° horizontal resolution
16 ensemble members
RMSD to independent data

18 tests with different parameters
(e.g., inflation and sampling order)

O O O O O O

Results:

o Up to 45% RMSD reduction in a
non-assimialted variable (nitrate)

Satellite
chlorophyll
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Tuning
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Tuning what?

Filter parameters, e.qg.,
inflation
and
observation error

Model parameters
and
initial conditions
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Tuning what?

Model parameters Filter parameters, e.g.,
x and inflation

. - and
initial conditions )
observation error

If you have a prior,
leave it to filters and
sampling methods
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Tuning how?

We need an index to optimize.
It must be general, data-driven and it should make sense.

Likelihood Cross-entropy
The classic The trendy

Kullback-Leibler
divergence
The nerd

OGS



Tuning how?

We need an index to optimize.

It must be general, data-driven and it should make sense.

Likelihood Cross-entropy
The classic The trendy

Kullback-Leibler 2
divergence

The nerd

Yes, they are all equivalent!
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The auto-tuning minimization
Recal: P~ LAL.

P“ke=PH+R=LHALHT+R,
where L, is the projection of L in observation space.

Given that y is the observation,
y; is the forecasted observation
and d =y-y.

Loss=|P, |+d"P, "d

OGS



The auto-tuning minimization
Recal: P~ LAL.

P"ke=PH+R=LHALHT+R,
where L, is the projection of L in observation space.

Given that y is the observation,
y; is the forecasted observation
and d =y-y.

Loss=|P, |+d"P, "d

; It can be computed lightning fast ;

by projecting in ensemble space
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Twin experiment #1
(100-tests average)

Auto-tuning:
e forgetting factor

Results:
The filter with auto-tuning
(purple) converge faster

than the best tuned filter.

RMSE all

RMSE all

—— Ghosh(31, forget=0.9, order=>5)
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Twin experiment #2
(100-tests average)

Auto-tuning:

e forgetting factor and

e oObservation error
Only the purple filter must
guess the observation error.

Results:

The filter with auto-tuning
(purple) is as good as the
best tuned filter.
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Auto-tuning 3D implementation
Setup:

Mediterranean Sea

1-year simulations

1/24° horizontal resolution
24 ensemble members

3k cores x 150h =

450k core hours per run!

Satellite

chlorophyll

I

Milions of core hours saved!
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Take home messages

Sampling:
e the high-order sampling and the GHOSH filter significantly
improve performance,
e with near the same computational cost.

Tuning:
e the likelihood-based auto-tuning saves time (and money),
e while granting the best performances.
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Instabilities
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Long runs

OGS
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Auto-tuning SEIK and GHOSH
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