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Did you know that… 

…your DA performances are widely affected by:

● Sampling

● Tuning



Did you know that… 

…your DA performances are widely affected by:
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It’s general, 
it’s for everyone,  

it’s for you!



Sampling



Sampling (a look to the past)

The covariance P is approximated by a base L and a small symetric matrix A: 
P ≈ L A LT

The sampling matrix X (i.e., the ensemble anomalies) is:
X = sqrt(EnsSize) L S Ω,

where     S2 = A,     Ω ΩT = I,      Ω 1 = 0.

The sampling matches statistical moments up to order 2: 
X 1 = 0,     (1/EnsSize) X X

T = L A LT

The second-order-exact sampling
Pham 1996, Pham 2001

used in SEIK, ETKF and other square root filters
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2nd-order means:
“the diagram is exact if 

the model is a 
2nd-order 

polynomial”
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Sampling (a look to the past)

The covariance P is approximated by a base L and a small symetric matrix A: 
P ≈ L A LT

The sampling matrix X (i.e., the ensemble anomalies) is:
X = sqrt(EnsSize) L S Ω,

where     S2 = A,     Ω ΩT = I,      Ω 1 = 0.

The sampling matches statistical moments up to order 2: 
X 1 = 0,     (1/EnsSize) X X

T = L A LT

The second-order-exact sampling
Pham 1996, Pham 2001

used in SEIK, ETKF and other square root filters

This sampling method is exact if 
the model is a second-order polynomial
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o Shady areas represent a Gaussian 
distribution.
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Higher order requires more ensemble members

o Shady areas represent a Gaussian 
distribution.

o 3 ensemble members: 
2nd-order sampling

o 4 ensemble members:
3rd-order sampling

o 4 ensemble members in 3D space: 
usual 2nd-order sampling



The high-order sampling idea

4 members in 3D
(2nd-order approximation)

that project in

4 members in 2D
(3rd-order approximation)

that project in

3 weighted members in 1D
(5th-order approximation)

Improved precision

by

rising order
in the most relevant 

PCA components

NO more members

NO higher 
computational cost



Enhance your sampling method

P ≈ L A LT,      S2 = A
X = L S E Ωh W,

where W is the diagonal matrix of the ensemble weights,
S LT L S = E D ET is an eigendecomposition with decreasing eigenvalues,

Ωh is an orthogonal matrix encoding statistical moments.

The sampling matches statistical moments up to an arbitrary high order 
(limited by ensemble size) in the principal error components.

The high-order sampling
Spada et al. 2024

(https://doi.org/10.5194/gmd-2023-170)

used in GHOSH



Twin experiment: SEIK vs GHOSH

Toy model: Lorenz96 (62 variables)
Observations: odd variables only
Observation error: Gaussian noise (standard deviation is 1)
Time between observations: 0.1 to 0.3 time units
Ensemble Size: 15, 31 and 63
Inflation (forgetting factor): 0.5 to 1.0
Experiments: 400 experiments for each configuration, randomly changing 
truth, observations and initial conditions, for a total of 66000 tests.



Twin experiment: SEIK vs GHOSH

● GHOSH always improves RMSE (up 
to 70% reduction),

● GHOSH converges for larger intervals 
between observations (0.25 and 0.3)

● GHOSH is more stable and needs less 
inflation

● GHOSH has no higher computational 
cost than SEIK 

Very similar results also with the 
two-scale Lorenz05 model



o Up to 45% RMSD reduction in a 
non-assimialted variable (nitrate)

Setup:
Realistic 3D test

Model (BGC + transport): 
BFM + OGSTM

Satellite 
chlorophyll

Observations: 
Satellite chlorophyll

o Mediterranean Sea
o 1-year simulations
o 1/4o horizontal resolution 
o 16 ensemble members
o RMSD to independent data
o 18 tests with different parameters 

(e.g., inflation and sampling order)

Results:



Tuning



Tuning what?

Model parameters
and

initial conditions

Filter parameters, e.g.,
inflation

and
observation error
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Filter parameters, e.g.,
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❌ ✅
If you have a prior, 
leave it to filters and 
sampling methods



Tuning how?

Likelihood
The classic

We need an index to optimize.
It must be general, data-driven and it should make sense.

Cross-entropy
The trendy

Kullback–Leibler 
divergence
The nerd



Tuning how?

Likelihood
The classic

We need an index to optimize.
It must be general, data-driven and it should make sense.

Cross-entropy
The trendy

Kullback–Leibler 
divergence
The nerd

✅✅
✅

Yes, they are all equivalent!



Recall: P ≈ L A LT.

Plike = PH + R = LH A LH
T + R,

where LH is the projection of L  in observation space.

Given that y is the observation,
yf is the forecasted observation
and d = y-yf

Loss = |Plike| +dT Plike
-1 d

The auto-tuning minimization



Recall: P ≈ L A LT.

Plike = PH + R = LH A LH
T + R,

where LH is the projection of L  in observation space.

Given that y is the observation,
yf is the forecasted observation
and d = y-yf

Loss = |Plike| +dT Plike
-1 d

It can be computed lightning fast 
by projecting in ensemble space 

The auto-tuning minimization



Twin experiment #1 
(100-tests average)

Auto-tuning: 
● forgetting factor

Results:
The filter with auto-tuning 
(purple) converge faster 
than the best tuned filter.



Twin experiment #2 
(100-tests average)

Auto-tuning: 
● forgetting factor and
● observation error

Only the purple filter must 
guess the observation error.

Results:
The filter with auto-tuning 
(purple) is as good as the 
best tuned filter.



Setup:
Auto-tuning 3D implementation

Model (BGC + transport): 
BFM + OGSTM

Satellite 
chlorophyll

Observations: 
Satellite chlorophyll

● Mediterranean Sea
● 1-year simulations
● 1/24o horizontal resolution 
● 24 ensemble members
● 3k cores x 150h =

450k core hours per run!

Milions of core hours saved!



Sampling:
● the high-order sampling and the GHOSH filter significantly 

improve performance,
● with near the same computational cost.

Tuning:
● the likelihood-based auto-tuning saves time (and money),
● while granting the best performances.

Take home messages
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THANK YOU!

Take a look at: 

“GHOSH v1.0.0: a novel Gauss-Hermite High-Order 

Sampling Hybrid filter for computationally efficient 

data assimilation in geosciences”

https://doi.org/10.5194/gmd-2023-170

The EnKF Workshop 2024
17 – 19 June, 2024



Instabilities



Long runs



Auto-tuning SEIK and GHOSH


