

Ensemble Kalman Filter Strategies for Efficient Data Assimilation in Geosciences

Simone Spada, Anna Teruzzi, Gianpiero Cossarini

sspada@ogs.it

* * * * * * *

The EnKF Workshop 2024 17 –{19 June, 2024

Did you know that...

...your DA performances are widely affected by:

- Sampling
- Tuning

Did you know that...

...your DA performances are widely affected by:

- Sampling
- Tuning

It's general, it's for everyone, it's for **you!**

Sampling

Sampling (a look to the past)

The **second-order-exact sampling** Pham 1996, Pham 2001

used in SEIK, ETKF and other square root filters

The covariance **P** is approximated by a base **L** and a small symetric matrix **A**: $\mathbf{P} \approx \mathbf{L} \mathbf{A} \mathbf{L}^{\mathsf{T}}$

> The sampling matrix **X** (i.e., the ensemble anomalies) is: **X** = sqrt(EnsSize) **L** S Ω , where **S**² = **A**, $\Omega \Omega^{T} = I$, $\Omega 1 = 0$.

The sampling matches statistical moments up to order 2: **X** $\mathbf{1} = \mathbf{0}$, (1/EnsSize) **X** $\mathbf{X}^{\mathsf{T}} = \mathbf{L} \mathbf{A} \mathbf{L}^{\mathsf{T}}$

Sampling (a look to the past)

The **second-order-exact sampling** Pham 1996, Pham 2001

used in SEIK, ETKF and other square root filters

The covariance **P** is approximated by a base **L** and a small symetric matrix **A**: $\mathbf{P} \approx \mathbf{L} \mathbf{A} \mathbf{L}^{\mathsf{T}}$

> The sampling matrix **X** (i.e., the ensemble anomalies) is: **X** = sqrt(EnsSize) **L** S Ω , where **S**² = **A**, $\Omega \Omega^{T} = I$, $\Omega 1 = 0$.

The sampling matches statistical moments up to order 2: **X 1** = **0**, (1/EnsSize) **X** $X^{T} = L A L^{T}$

Sampling order

Sampling order

Sampling (a look to the past)

The **second-order-exact sampling** Pham 1996, Pham 2001

used in SEIK, ETKF and other square root filters

The covariance **P** is approximated by a base **L** and a small symetric matrix **A**: $\mathbf{P} \approx \mathbf{L} \mathbf{A} \mathbf{L}^{\mathsf{T}}$

> The sampling matrix **X** (i.e., the ensemble anomalies) is: **X** = sqrt(EnsSize) **L** S Ω , where **S**² = **A**, $\Omega \Omega^{T} = I$, $\Omega 1 = 0$.

The sampling matches statistical moments up to order 2: **X 1** = **0**, (1/EnsSize) **X** $X^{T} = L A L^{T}$

Sampling (a look to the past)

The **second-order-exact sampling** Pham 1996, Pham 2001

used in SEIK, ETKF and other square root filters

The covariance **P** is approximated by a base **L** and a small symetric matrix **A**:

 Shady areas represent a Gaussian distribution.

- Shady areas represent a Gaussian distribution.
- 3 ensemble members:
 2nd-order sampling

- Shady areas represent a Gaussian distribution.
- 3 ensemble members:
 2nd-order sampling
- 4 ensemble members:
 3rd-order sampling

- Shady areas represent a Gaussian distribution.
- 3 ensemble members:
 2nd-order sampling
- 4 ensemble members:
 3rd-order sampling
- 4 ensemble members in 3D space: usual 2nd-order sampling

The high-order sampling idea

4 members in 3D (2nd-order approximation)

that project in

4 members in 2D (3rd-order approximation)

that project in

3 weighted members in 1D (5th-order approximation)

Improved precision

by

rising order in the most relevant **PCA** components

NO more members

NO higher computational cost

Enhance your sampling method

The **high-order sampling** Spada et al. 2024 (https://doi.org/10.5194/gmd-2023-170)

used in GHOSH

 $\mathbf{P} \approx \mathbf{L} \mathbf{A} \mathbf{L}^{\mathsf{T}}, \quad \mathbf{S}^2 = \mathbf{A} \\ \mathbf{X} = \mathbf{L} \mathbf{S} \mathbf{E} \mathbf{\Omega}_{\mathsf{h}} \mathbf{W},$

where **W** is the diagonal matrix of the ensemble weights, **S** $L^T L S = E D E^T$ is an eigendecomposition with decreasing eigenvalues, Ω_h is an orthogonal matrix encoding statistical moments.

The sampling matches statistical moments up to an **arbitrary high order** (limited by ensemble size) in the principal error components.

Twin experiment: SEIK vs GHOSH

Toy model: Lorenz96 (62 variables) Observations: odd variables only Observation error: Gaussian noise (standard deviation is 1) Time between observations: 0.1 to 0.3 time units Ensemble Size: 15, 31 and 63 Inflation (forgetting factor): 0.5 to 1.0 Experiments: 400 experiments for each configuration, randomly changing truth, observations and initial conditions, for a total of 66000 tests.

Twin experiment: SEIK vs GHOSH

- GHOSH **always improves RMSE** (up to 70% reduction),
- GHOSH converges for larger intervals between observations (0.25 and 0.3)
- GHOSH is more stable and needs less inflation
- GHOSH has no higher computational cost than SEIK

Very similar results also with the two-scale Lorenz05 model

Realistic 3D test

Setup:

- o Mediterranean Sea
- 1-year simulations
- 1/4° horizontal resolution
- 16 ensemble members
- RMSD to independent data
- 18 tests with different parameters
 (e.g., inflation and sampling order)

Results:

Up to 45% RMSD reduction in a non-assimialted variable (nitrate)

Model (BGC + transport): BFM + OGSTM

Observations: Satellite chlorophyll

Tuning

Tuning what?

Model parameters and initial conditions Filter parameters, e.g., inflation and observation error

Model parameters and initial conditions Filter parameters, e.g., inflation and observation error

If you have a prior, leave it to filters and sampling methods

Tuning how?

We need an index to optimize. It must be general, data-driven and it should make sense.

Tuning how?

We need an index to optimize. It must be general, data-driven and it should make sense.

Yes, they are all equivalent!

The auto-tuning minimization

Recall: $\mathbf{P} \approx \mathbf{L} \mathbf{A} \mathbf{L}^{\mathsf{T}}$.

$$\mathbf{P}_{\text{like}} = \mathbf{P}_{\mathbf{H}} + \mathbf{R} = \mathbf{L}_{\mathbf{H}} \mathbf{A} \mathbf{L}_{\mathbf{H}}^{\mathsf{T}} + \mathbf{R},$$

where $\mathbf{L}_{\mathbf{H}}$ is the projection of \mathbf{L} in observation space.

Given that **y** is the observation, \mathbf{y}_{f} is the forecasted observation and $\mathbf{d} = \mathbf{y} - \mathbf{y}_{f}$

$$Loss = |\mathbf{P}_{like}| + \mathbf{d}^T \mathbf{P}_{like}^{-1} \mathbf{d}$$

The auto-tuning minimization

Recall: $\mathbf{P} \approx \mathbf{L} \mathbf{A} \mathbf{L}^{\mathsf{T}}$.

$$\mathbf{P}_{\text{like}} = \mathbf{P}_{\mathbf{H}} + \mathbf{R} = \mathbf{L}_{\mathbf{H}} \mathbf{A} \mathbf{L}_{\mathbf{H}}^{\mathsf{T}} + \mathbf{R},$$

where $\mathbf{L}_{\mathbf{H}}$ is the projection of \mathbf{L} in observation space.

Given that **y** is the observation, \mathbf{y}_{f} is the forecasted observation and $\mathbf{d} = \mathbf{y} - \mathbf{y}_{f}$

$$Loss = |\mathbf{P}_{like}| + \mathbf{d}^T \mathbf{P}_{like}^{-1} \mathbf{d}$$

It can be computed lightning fast by projecting in ensemble space

Twin experiment #1 (100-tests average)

Auto-tuning:

• forgetting factor

Results:

The filter with auto-tuning (purple) converge faster than the best tuned filter.

Twin experiment #2 (100-tests average)

Auto-tuning:

- forgetting factor and
- observation error

Only the **purple** filter must guess the observation error.

Results:

The filter with auto-tuning (purple) is as good as the best tuned filter.

Auto-tuning 3D implementation

Setup:

- Mediterranean Sea
- 1-year simulations
- 1/24° horizontal resolution
- 24 ensemble members
- 3k cores x 150h =
 450k core hours per run!

Model (BGC + transport): BFM + OGSTM

Observations: Satellite chlorophyll

Take home messages

Sampling:

- the high-order sampling and the GHOSH filter significantly improve performance,
- with near the **same computational cost**.

Tuning:

- the likelihood-based auto-tuning saves time (and money),
- while granting the **best performances**.

THANK YOU!

Take a look at:"GHOSH v1.0.0: a novel Gauss-Hermite High-OrderSampling Hybrid filter for computationally efficientdata assimilation in geosciences"https://doi.org/10.5194/gmd-2023-170

Simone Spada, Anna Teruzzi, Gianpiero Cossarini

sspada@ogs.it

Instabilities

Long runs

Auto-tuning SEIK and GHOSH

