A Multi Fidelity Ensemble Kalman Filter with a machine learned surrogate model

Jeffrey van der Voort

joint work with: Martin Verlaan Hanne Kekkonen

Delft University of Technology, The Netherlands

June 18th, 2024

Applications

Use of ensemble simulations and ensemble data assimilation is ubiquitous in geosciences...

Figure: Figure 1 from Grönquist et al. (2019): Predicting Weather Uncertainty with Deep Convnets

Applications

Use of ensemble simulations and ensemble data assimilation is ubiquitous in geosciences...

Figure: Figure 1 from Grönquist et al. (2019): Predicting Weather Uncertainty with Deep Convnets

...but running ensembles can be very expensive.

Main idea

Few expensive, but accurate, full order model runs

Few expensive, but accurate, full order model runs

+

Many cheap, but less accurate, surrogate model runs

Few expensive, but accurate, full order model runs

+

Many cheap, but less accurate, surrogate model runs

 \Rightarrow combined using a Multi Fidelity Ensemble Kalman Filter (MF-EnKF) framework.

Figure: Figure 4.1 [edited] from Popov et al. (2021): A Multifidelity Ensemble Kalman Filter with Reduced Order Control Variates

Forecast step

$$
X_i^{b,[k]} = \mathcal{M}^X(X_{i-1}^{a,[k]}) + \varepsilon_i^X, \qquad k = 1, \dots N_X
$$

$$
U_j^{b,[k]} = \mathcal{M}^U(U_{i-1}^{a,[k]}) + \varepsilon_i^U, \qquad k = 1, \dots N_U
$$

Forecast step $X_i^{b,[k]}$ $i^{b,[k]} = \mathcal{M}^X(X_{i-1}^{a,[k]})$ $\begin{aligned} \epsilon^{a,[k]}_{i-1} + \epsilon^{X}_{i}, \qquad k = 1, \ldots N_{X} \end{aligned}$ $U_j^{b,[k]}$ $i_j^{b,[k]} = \mathcal{M}^U(U_{i-1}^{a,[k]})$ $\begin{aligned} \epsilon^{[a,\lfloor k \rfloor} \\ i-1 \end{aligned} + \epsilon^{U}_{i}, \qquad k = 1, \ldots N_{U}$

 \bullet M^X propagates state forward from time t_{i-1} to t_i

Forecast step

$$
X_i^{b,[k]} = \mathcal{M}^X(X_{i-1}^{a,[k]}) + \varepsilon_i^X, \qquad k = 1, \dots N_X
$$

$$
U_i^{b,[k]} = \mathcal{M}^U(U_{i-1}^{a,[k]}) + \varepsilon_i^U, \qquad k = 1, \dots N_U
$$

- \bullet M^X propagates state forward from time t_{i-1} to t_i
- \bullet \mathcal{M}^{U} is a machine learned surrogate model, as opposed to a ROM that is used in Popov et al. (2021)

Forecast step

$$
X_i^{b,[k]} = \mathcal{M}^X(X_{i-1}^{a,[k]}) + \varepsilon_i^X, \qquad k = 1, \dots N_X
$$

$$
U_j^{b,[k]} = \mathcal{M}^U(U_{i-1}^{a,[k]}) + \varepsilon_i^U, \qquad k = 1, \dots N_U
$$

- \bullet M^X propagates state forward from time t_{i-1} to t_i
- \bullet \mathcal{M}^{U} is a machine learned surrogate model, as opposed to a ROM that is used in Popov et al. (2021)
- \bullet ε_i^X and ε_i^U are the model error terms

Analysis step

$$
X_i^{a,[k]} = X_i^{b,[k]} - \widetilde{K}_i(\mathcal{H}(X_i^{b,[k]}) - y_i - \eta_i), \qquad k = 1, ..., N_X
$$

$$
U_i^{a,[k]} = U_i^{b,[k]} - \widetilde{K}_i(\mathcal{H}(U_i^{b,[k]}) - y_i - \eta_i), \qquad k = 1, ..., N_U
$$

Analysis step

$$
X_i^{a,[k]} = X_i^{b,[k]} - \widetilde{K}_i(\mathcal{H}(X_i^{b,[k]}) - y_i - \eta_i), \qquad k = 1, ..., N_X
$$

$$
U_i^{a,[k]} = U_i^{b,[k]} - \widetilde{K}_i(\mathcal{H}(U_i^{b,[k]}) - y_i - \eta_i), \qquad k = 1, ..., N_U
$$

 \bullet \tilde{K}_i is the Kalman gain matrix, which decides the weighting of the forecast compared to the observation y_i

Analysis step

$$
X_i^{a,[k]} = X_i^{b,[k]} - \widetilde{K}_i(\mathcal{H}(X_i^{b,[k]}) - y_i - \eta_i), \qquad k = 1, \dots, N_X
$$

$$
U_i^{a,[k]} = U_i^{b,[k]} - \widetilde{K}_i(\mathcal{H}(U_i^{b,[k]}) - y_i - \eta_i), \qquad k = 1, \dots, N_U
$$

- \bullet \tilde{K}_i is the Kalman gain matrix, which decides the weighting of the forecast compared to the observation y_i
- \bullet H is the observation operator, mapping states to observation space

Analysis step

$$
X_i^{a,[k]} = X_i^{b,[k]} - \widetilde{K}_i(\mathcal{H}(X_i^{b,[k]}) - y_i - \eta_i), \qquad k = 1, \dots, N_X
$$

$$
U_i^{a,[k]} = U_i^{b,[k]} - \widetilde{K}_i(\mathcal{H}(U_i^{b,[k]}) - y_i - \eta_i), \qquad k = 1, \dots, N_U
$$

- \bullet \tilde{K}_i is the Kalman gain matrix, which decides the weighting of the forecast compared to the observation y_i
- \bullet H is the observation operator, mapping states to observation space
- η_i is the measurement error term η_i is the measurement error term

Total analysis

$$
Z_i^a=(1-\lambda)\bar{X_i^a}+\lambda\bar{U_i^a}
$$

Total analysis

$$
Z_i^a=(1-\lambda)\bar{X_i^a}+\lambda\bar{U_i^a}
$$

How is the information combined?

• Tuning parameter λ

Total analysis

$$
Z_i^a=(1-\lambda)\bar{X_i^a}+\lambda\bar{U_i^a}
$$

How is the information combined?

- Tuning parameter λ
- Shared Kalman gain matrix \widetilde{K}_i

$$
\widetilde{K}_i = \text{Cov}(Z_i^b, \mathcal{H}(Z_i^b))(\text{Cov}(\mathcal{H}(Z_i^b), \mathcal{H}(Z_i^b)) + R)^{-1}
$$

with $Z_i^b = (1 - \lambda) \bar{X_i^b} + \lambda \bar{U_i^b}$ the total background term and R the covariance matrix of measurement errors.

Numerical experiments

We have tested the MF-EnKF with ML surrogate on 2 common toy models:

- Lorenz-96 model
- QG model

The physical model \mathcal{M}^X

• Lorenz-96 equations:

$$
\frac{dx^{n}}{dt} = (x^{n+1} - x^{n-2})x^{n-1} - x^{n} + F
$$

with $n = 0, \ldots, 39$, forcing $F = 8$ and periodic boundary conditions.

The physical model \mathcal{M}^X

• Lorenz-96 equations:

$$
\frac{dx^{n}}{dt} = (x^{n+1} - x^{n-2})x^{n-1} - x^{n} + F
$$

with $n = 0, \ldots, 39$, forcing $F = 8$ and periodic boundary conditions.

● Initial condition:

$$
x_0 = \mathbf{F} + \Delta e_1
$$

with **F** the vector with all elements equal to F , which is the steady-state, and $\Delta = 0.01$

The surrogate model \mathcal{M}^{U}

- Implemented in Tensorflow
- Convolutional Neural Network (CNN)
- 3 convolutional layers, periodic padding
- About 1,000 parameters
- Trained on time-series of length 4,000 from direct simulations of Lorenz-96 model

Data assimilation setup

- Optimal localization using GC localization function added to EnKF for fairer comparison
- MF-EnKF with $\lambda = 0.5$ as tuning parameter
- Assimilation window: 4000 time steps
- Observations: noisy (σ_{obs} = 1.0) with 50% of the state observed (only even locations)

We use a fixed number of 10 full model runs.

Figure: RMSE for (localized) EnKF and MF-EnKF against N_U

 $\tilde{\mathbf{T}}$ UDelft

Figure: RMSE for (localized) EnKF and MF-EnKF against N_X

The physical model \mathcal{M}^X

• 1-layer Barotropic Vorticity equations

$$
\partial_t q - \psi_y q_x + \psi_x q_y = 0
$$

$$
\Delta \psi - \frac{f_0^2}{gH} \psi = q - \beta y
$$

- Double gyre setup with wind forcing $F = \frac{L\tau_0}{2\pi\epsilon_0}$ $rac{L\tau_0}{2\pi\rho_0}$ sin $(\frac{2\pi y}{L})$ $\frac{\pi y}{L}$
- Free slip boundary conditions
- Initial condition $q_0 = \psi_0 = 0$, spin-up time of 50 years
- Implemented using MQGeometry package from Thiry et al. (2024)

Figure: Initial vorticity (resolution: 128×128) after spin-up

The surrogate model \mathcal{M}^{U}

- Implemented in PyTorch
- Convolutional Neural Network (CNN)
- Similar setup as for Lorenz-96 surrogate model
- About 40,000 parameters
- Trained on 1 year of direct simulations from the QG model

Data assimilation setup

- MF-EnKF with $\lambda = 0.5$ as tuning parameter
- State vector: streamfunction ψ at every grid point (64 \times 64).
- Localization using GC localization function
- Assimilation window: 1000 time steps
- Observations: noisy ($\sigma_{obs} = 1\%$) observations at 50% of the grid available, randomly selected locations

QG model results - no localization

We use a fixed number of 50 full model runs.

Figure: RMSE for EnKF and MF-EnKF (no localization) against N_U

QG model results - no localization

We use a fixed number of 500 surrogate model runs.

Figure: RMSE for EnKF and MF-EnKF (no localization) against N_X

QG model results - with localization

Fix N_X = 50 and N_U = 500. Localization radius $r_X = r_U = r$.

QG model results - with localization

Fix N_X = 50 and N_U = 500. Localization radius $r_X = r_U = r$.

Very strict localization needed?

QG model results - with localization

Fix $N_X = 50$ and $N_U = 500$. Localization radius $r_X = r_U = r$.

Very strict localization needed?

EnKF outperforms MF-EnKF with strict localization \rightarrow need better surrogate?

Conclusions

- **1** MF-EnKF with ML surrogate outperforms EnKF for the same number of full model runs
- **2** MF-EnKF with ML surrogate outperforms localized EnKF for the same number of full model runs given enough surrogate runs
- **3** MF-EnKF can reach similar or improved accuracy with fewer full model runs

Future directions

- Use more realistic assumptions in QG model (finer spatial dimension, more general geometries, less observations)
- Compare influence of different surrogate models (lower-dimensional model VS Neural Network VS linear regression)
- Find optimal value for tuning parameter λ

Thank you for your attention

References

[1] Andrey A. Popov, Changhong Mou, Traian Iliescu, and Adrian Sandu (2021) A Multifidelity Ensemble Kalman Filter with Reduced Order Control Variates, SIAM Journal of Scientific Computing, Vol. 43, No. 2, pp. A1134-A1162, 2021.

[2] Thiry et al. (2024) MQGeometry-1.0: a multi-layer quasi-geostrophic solver on non-rectangular geometries, Geoscientific Model Development, Vol. 17, No. 4, pp. 1749-1764, 2024.

Extra slides

Influence of λ parameter

 $N_x = 10$, $N_U = 100$.

Figure: RMSE for different λ values for Lorenz-96 model (no localization)

 λ = 0: fully trust ensemble of full model runs $\lambda = 1$: fully trust ensemble of surrogate model runs

 $\tilde{\mathbf{T}}$ UDelft

Similar result when localization is included. $2/4$

Influence of surrogate model

Figure: RMSE for different surrogates for Lorenz-96 with fixed number of surrogate runs (no localization)

 M_1, \ldots, M_3 are increasingly bad surrogates.

Influence of observed percentage

Fix $N_x = 50$ and $N_U = 500$. Choose $r_x = r_U = r$. Assimilation window: $K = 1000$. Observation locations are selected at random at every time step (∼ every 1.1 hour).

Std. of the streamfunction is about 27.