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Applications

Use of ensemble simulations and ensemble data assimilation is
ubiquitous in geosciences...

Figure: Figure 1 from Grönquist et al. (2019): Predicting Weather
Uncertainty with Deep Convnets

...but running ensembles can be very expensive.
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Main idea

Few expensive, but accurate, full order model runs

+

Many cheap, but less accurate, surrogate model
runs

⇒ combined using a Multi Fidelity Ensemble
Kalman Filter (MF-EnKF) framework.
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The Multi-Fidelity EnKF (MF-EnKF)

Figure: Figure 4.1 [edited] from Popov et al. (2021): A Multifidelity
Ensemble Kalman Filter with Reduced Order Control Variates
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The Multi-Fidelity EnKF (MF-EnKF) - forecast step
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● MX propagates state forward from time ti−1 to ti
● MU is a machine learned surrogate model, as opposed to a
ROM that is used in Popov et al. (2021)

● εXi and εUi are the model error terms

5 / 24



The Multi-Fidelity EnKF (MF-EnKF) - forecast step

NX = 2 NU = 12

Forecast step

X
b,[k]
i =M

X
(X

a,[k]
i−1 ) + ε

X
i , k = 1, . . .NX

U
b,[k]
i =M

U
(U

a,[k]
i−1 ) + ε

U
i , k = 1, . . .NU

● MX propagates state forward from time ti−1 to ti
● MU is a machine learned surrogate model, as opposed to a
ROM that is used in Popov et al. (2021)

● εXi and εUi are the model error terms

5 / 24



The Multi-Fidelity EnKF (MF-EnKF) - forecast step

NX = 2 NU = 12

Forecast step

X
b,[k]
i =M

X
(X

a,[k]
i−1 ) + ε

X
i , k = 1, . . .NX

U
b,[k]
i =M

U
(U

a,[k]
i−1 ) + ε

U
i , k = 1, . . .NU

● MX propagates state forward from time ti−1 to ti

● MU is a machine learned surrogate model, as opposed to a
ROM that is used in Popov et al. (2021)

● εXi and εUi are the model error terms

5 / 24



The Multi-Fidelity EnKF (MF-EnKF) - forecast step

NX = 2 NU = 12

Forecast step

X
b,[k]
i =M

X
(X

a,[k]
i−1 ) + ε

X
i , k = 1, . . .NX

U
b,[k]
i =M

U
(U

a,[k]
i−1 ) + ε

U
i , k = 1, . . .NU

● MX propagates state forward from time ti−1 to ti
● MU is a machine learned surrogate model, as opposed to a
ROM that is used in Popov et al. (2021)

● εXi and εUi are the model error terms

5 / 24



The Multi-Fidelity EnKF (MF-EnKF) - forecast step

NX = 2 NU = 12

Forecast step

X
b,[k]
i =M

X
(X

a,[k]
i−1 ) + ε

X
i , k = 1, . . .NX

U
b,[k]
i =M

U
(U

a,[k]
i−1 ) + ε

U
i , k = 1, . . .NU

● MX propagates state forward from time ti−1 to ti
● MU is a machine learned surrogate model, as opposed to a
ROM that is used in Popov et al. (2021)

● εXi and εUi are the model error terms

5 / 24



The Multi-Fidelity EnKF (MF-EnKF) - Analysis step

NX = 2 NU = 12

Analysis step
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● K̃i is the Kalman gain matrix, which decides the weighting of
the forecast compared to the observation yi
● H is the observation operator, mapping states to observation
space
● ηi is the measurement error term
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The Multi-Fidelity EnKF (MF-EnKF)

Total analysis
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a
i

How is the information combined?

● Tuning parameter λ

● Shared Kalman gain matrix K̃i

K̃i = Cov(Z
b
i ,H(Z

b
i ))(Cov(H(Z

b
i ),H(Z

b
i )) + R)

−1

with Zb
i = (1 − λ)X̄

b
i + λŪ
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Numerical experiments

We have tested the MF-EnKF with ML surrogate on 2 common
toy models:

● Lorenz-96 model

● QG model
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Lorenz-96 results

The physical model MX

● Lorenz-96 equations:

dxn

dt
= (xn+1 − xn−2)xn−1 − xn + F

with n = 0, . . . ,39, forcing F = 8 and periodic boundary
conditions.

● Initial condition:
x0 = F +∆e1

with F the vector with all elements equal to F , which is the
steady-state, and ∆ = 0.01
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Lorenz-96 results

The surrogate model MU

● Implemented in Tensorflow

● Convolutional Neural Network (CNN)

● 3 convolutional layers, periodic padding

● About 1,000 parameters

● Trained on time-series of length 4,000 from direct simulations
of Lorenz-96 model

10 / 24



Lorenz-96 results

Data assimilation setup

● Optimal localization using GC localization function added to
EnKF for fairer comparison

● MF-EnKF with λ = 0.5 as tuning parameter

● Assimilation window: 4000 time steps

● Observations: noisy (σobs = 1.0) with 50% of the state
observed (only even locations)

11 / 24



Lorenz-96 results
We use a fixed number of 10 full model runs.

Figure: RMSE for (localized) EnKF and MF-EnKF against NU
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Lorenz-96 results

Figure: RMSE for (localized) EnKF and MF-EnKF against NX
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QG model results

The physical model MX

● 1-layer Barotropic Vorticity equations

∂tq − ψyqx + ψxqy = 0

∆ψ −
f 20
gH

ψ = q − βy

● Double gyre setup with wind forcing F = Lτ0
2πρ0

sin(2πyL )

● Free slip boundary conditions

● Initial condition q0 = ψ0 = 0, spin-up time of 50 years

● Implemented using MQGeometry package from Thiry et al.
(2024)
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QG model results

Figure: Initial vorticity (resolution: 128 × 128) after spin-up
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QG model results

The surrogate model MU

● Implemented in PyTorch

● Convolutional Neural Network (CNN)

● Similar setup as for Lorenz-96 surrogate model

● About 40,000 parameters

● Trained on 1 year of direct simulations from the QG model
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QG model results

Data assimilation setup

● MF-EnKF with λ = 0.5 as tuning parameter

● State vector: streamfunction ψ at every grid point (64 × 64).

● Localization using GC localization function

● Assimilation window: 1000 time steps

● Observations: noisy (σobs = 1%) observations at 50% of the
grid available, randomly selected locations
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QG model results - no localization
We use a fixed number of 50 full model runs.

Figure: RMSE for EnKF and MF-EnKF (no localization) against NU
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QG model results - no localization
We use a fixed number of 500 surrogate model runs.

Figure: RMSE for EnKF and MF-EnKF (no localization) against NX
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QG model results - with localization

Fix NX = 50 and NU = 500. Localization radius rX = rU = r .

r MF-EnKF EnKF (λ = 0)

1 0.89 0.81
2 1.04 1.01
3 1.02 1.13
4 1.06 1.36
5 1.12 1.65
10 1.49 3.57
20 2.44 7.45
64 4.94 15.1

Very strict localization needed?

EnKF outperforms MF-EnKF with strict localization → need better
surrogate?
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Conclusions

1 MF-EnKF with ML surrogate outperforms EnKF for the same
number of full model runs

2 MF-EnKF with ML surrogate outperforms localized EnKF for
the same number of full model runs given enough surrogate
runs

3 MF-EnKF can reach similar or improved accuracy with fewer
full model runs

21 / 24



Future directions

● Use more realistic assumptions in QG model (finer spatial
dimension, more general geometries, less observations)

● Compare influence of different surrogate models
(lower-dimensional model VS Neural Network VS linear
regression)

● Find optimal value for tuning parameter λ
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Thank you for your attention
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Influence of λ parameter
NX = 10, NU = 100.

Figure: RMSE for different λ values for Lorenz-96 model (no localization)

λ = 0: fully trust ensemble of full model runs
λ = 1: fully trust ensemble of surrogate model runs

Similar result when localization is included.
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Influence of surrogate model

Figure: RMSE for different surrogates for Lorenz-96 with fixed number of
surrogate runs (no localization)

M1, . . . ,M3 are increasingly bad surrogates.
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Influence of observed percentage

Fix NX = 50 and NU = 500. Choose rX = rU = r . Assimilation
window: K = 1000. Observation locations are selected at random
at every time step (∼ every 1.1 hour).

r RMSE (50%) RMSE (25%) RMSE (10%)

1 0.89 2.03 5.35
2 1.04 2.18 5.39
3 1.02 2.10 5.08
4 1.06 2.14 5.12
5 1.12 2.21 5.22
10 1.49 2.80 6.54
20 2.44 4.56 diverges
64 4.94 10.10 diverges

Std. of the streamfunction is about 27.
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