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Applications

Use of ensemble simulations and ensemble data assimilation is
ubiquitous in geosciences...
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Figure: Figure 1 from Gronquist et al. (2019): Predicting Weather
Uncertainty with Deep Convnets
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Figure: Figure 1 from Gronquist et al. (2019): Predicting Weather

...but running ensembles can be very expensive.
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Main idea

Few expensive, but accurate, full order model runs

+

Many cheap, but less accurate, surrogate model
runs

= combined using a Multi Fidelity Ensemble
Kalman Filter (MF-EnKF) framework.
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The Multi-Fidelity EnKF (MF-EnKF)
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Figure: Figure 4.1 [edited] from Popov et al. (2021): A Multifidelity
Ensemble Kalman Filter with Reduced Order Control Variates
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The Multi-Fidelity EnKF (MF-EnKF) - forecast step
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The Multi-Fidelity EnKF (MF-EnKF) - forecast step
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The Multi-Fidelity EnKF (MF-EnKF) - forecast step
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o MX propagates state forward from time tj_1 to t;
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The Multi-Fidelity EnKF (MF-EnKF) - forecast step
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i
o MX propagates state forward from time tj_1 to t;

e MUY is a machine learned surrogate model, as opposed to a
ROM that is used in Popov et al. (2021)
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The Multi-Fidelity EnKF (MF-EnKF) - forecast step
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o MX propagates state forward from time tj_1 to t;

e MUY is a machine learned surrogate model, as opposed to a
ROM that is used in Popov et al. (2021)

* X and €Y are the model error terms
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The Multi-Fidelity EnKF (MF-EnKF) - Analysis step
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The Multi-Fidelity EnKF (MF-EnKF) - Analysis step
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The Multi-Fidelity EnKF (MF-EnKF) - Analysis step
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° K; is the Kalman gain matrix, which decides the weighting of
the forecast compared to the observation y;
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Analysis step
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X.a’[k] = X,'b’[k] - Ri(H(Xiby[k]) —YiT ni), k

ot = up - KU -y, K

The Multi-Fidelity EnKF (MF-EnKF) - Analysis step
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The Multi-Fidelity EnKF (MF-EnKF) - Analysis step

Analysis step
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° K; is the Kalman gain matrix, which decides the weighting of
the forecast compared to the observation y;
® H is the observation operator, mapping states to observation

space

® 7; is the measurement error term 6/24



The Multi-Fidelity EnKF (MF-EnKF)

Total analysis

Z7 = (1-N)X? +\U?
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Total analysis
Z7 = (1-N)X? +\U?

How is the information combined?

® Tuning parameter A
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The Multi-Fidelity EnKF (MF-EnKF)

Total analysis
Z7 = (1-N)X? +\U?
How is the information combined?
® Tuning parameter A
* Shared Kalman gain matrix K;
Ki = Cov(ZP, H(ZP))(Cov(H(ZP), H(ZP)) + R) ™

with Z,-b =(1- )\)Xib + )\Ul.b the total background term and R
the covariance matrix of measurement errors.
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Numerical experiments

We have tested the MF-EnKF with ML surrogate on 2 common
toy models:

® Lorenz-96 model
* QG model
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Lorenz-96 results

The physical model M*X
® Lorenz-96 equations:
g

dt

_ (Xn+1 _ Xn—2)Xn—1 X"+ F

with n=0,...,39, forcing F =8 and periodic boundary
conditions.
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Lorenz-96 results

The physical model M*X
® Lorenz-96 equations:
g

dt

_ (Xn+1 _ Xn—2)Xn—1 X"+ F

with n=0,...,39, forcing F =8 and periodic boundary
conditions.

® Initial condition:
X0 = F + Ael

with F the vector with all elements equal to F, which is the
steady-state, and A =0.01
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Lorenz-96 results

The surrogate model MY
® Implemented in Tensorflow
¢ Convolutional Neural Network (CNN)
® 3 convolutional layers, periodic padding
About 1,000 parameters

Trained on time-series of length 4,000 from direct simulations
of Lorenz-96 model
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Lorenz-96 results

Data assimilation setup

® Optimal localization using GC localization function added to
EnKF for fairer comparison

* MF-EnKF with A = 0.5 as tuning parameter
¢ Assimilation window: 4000 time steps

* Observations: noisy (oops = 1.0) with 50% of the state
observed (only even locations)
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Lorenz-96 results
We use a fixed number of 10 full model runs.
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Figure: RMSE for (localized) EnKF and MF-EnKF against Ny
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Lorenz-96 results

Number of surrogate runs: 100
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Figure: RMSE for (localized) EnKF and MF-EnKF against Nx
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QG model results

The physical model M*X

® 1-layer Barotropic Vorticity equations

0tq - Yy qx +xqy =0

%2
Aw——H¢=q—ﬂy

Double gyre setup with wind forcing F = LT" sm(2”y)

Free slip boundary conditions

Initial condition gg = %o =0, spin-up time of 50 years

Implemented using MQGeometry package from Thiry et al.
(2024)
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QG model results

Potential Vorticity at t = 50 years
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Figure: Initial vorticity (resolution: 128 x 128) after spin-up
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QG model results

The surrogate model MY
¢ Implemented in PyTorch
¢ Convolutional Neural Network (CNN)
* Similar setup as for Lorenz-96 surrogate model
About 40,000 parameters
® Trained on 1 year of direct simulations from the QG model
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QG model results

Data assimilation setup
* MF-EnKF with A = 0.5 as tuning parameter
* State vector: streamfunction v at every grid point (64 x 64).
® Localization using GC localization function
¢ Assimilation window: 1000 time steps

* Observations: noisy (oops = 1%) observations at 50% of the
grid available, randomly selected locations
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QG model results - no localization
We use a fixed number of 50 full model runs.
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Figure: RMSE for EnKF and MF-EnKF (no localization) against Ny
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QG model results - no localization

We use a fixed number of 500 surrogate model runs.
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Figure:

RMSE for EnKF and MF-EnKF (no localization) against Nx
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QG model results - with localization

Fix Nx =50 and Ny =500. Localization radius rx =ry =r.

r | MF-EnKF | EnKF (\ = 0)
1 0.89 0.81
2 1.04 1.01
3 1.02 1.13
4 1.06 1.36
5 1.12 1.65
10| 1.49 3.57
20| 244 7.45
64 | 494 15.1
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QG model results - with localization

Fix Nx =50 and Ny =500. Localization radius rx =ry =r.

r | MF-EnKF | EnKF (\ = 0)
1 0.89 0.81
2 1.04 1.01
3 1.02 1.13
4 1.06 1.36
5 1.12 1.65
10| 1.49 3.57
20| 244 7.45
64 | 494 15.1

Very strict localization needed?

EnKF outperforms MF-EnKF with strict localization — need better
surrogate?
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Conclusions

@ MF-EnKF with ML surrogate outperforms EnKF for the same
number of full model runs

® MF-EnKF with ML surrogate outperforms localized EnKF for
the same number of full model runs given enough surrogate
runs

©® MF-EnKF can reach similar or improved accuracy with fewer
full model runs
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Future directions

* Use more realistic assumptions in QG model (finer spatial
dimension, more general geometries, less observations)

® Compare influence of different surrogate models
(lower-dimensional model VS Neural Network VS linear
regression)

® Find optimal value for tuning parameter A
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Thank you for your attention
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Influence of A\ parameter
Nx =10, Ny = 100.
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Lambda

Figure: RMSE for different A values for Lorenz-96 model (no localization)

A =0: fully trust ensemble of full model runs
A = 1: fully trust ensemble of surrogate model runs

. . . . . . 2/4
Similar result when localization is included. /



Influence of surrogate model

EnKF

MF-EnKF with M1
MF-EnKF with M2
MF-EnKF with M3
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Figure: RMSE for different surrogates for Lorenz-96 with fixed number of
surrogate runs (no localization)

My, ..., M3 are increasingly bad surrogates.
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Influence of observed percentage

Fix Nx =50 and Ny =500. Choose rx = ry = r. Assimilation
window: K =1000. Observation locations are selected at random
at every time step (~ every 1.1 hour).
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N =
S o O W HS

64

0.89
1.04
1.02
1.06
1.12
1.49
244
4.94

2.03
2.18
2.10
2.14
221
2.80
4.56
10.10

Std. of the streamfunction is about 27.
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