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• Dynamically consistent reconstruction of the climate system, atmospheric reanalyses (ERA5, Hersbach et al., 
2023), ocean reanalyses (ORAS5, Zuo et al., 2019), coupled reanalyses (Laloyaux et al., 2018, O’Kane et al., 2021)

• Reanalysis = dynamical model + observations + data assimilation

• Understanding anthropologically driven global warming

• Studying climate variability and teleconnections

• Initialising climate predictions

What’s climate reanalysis? 



• Developed and tested new DA techniques

• produced a long-coupled reanalysis over 1860-2022

What do we do in CoRea? 
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Why do we need yet another reanalysis?
Dataset Component Description Category Reference

20CRv2c Atmosphere/Land Produced by NOAA–CIRES. Available
globally from 1851 to 2014.

Surface input Compo et al. (2011)

20CRv3 Atmosphere/Land Produced by NOAA–CIRES. Available 
globally from 1806 to 2015.

Surface input Slivinski et al. (2021)

ERA-20C Atmosphere/Land Produced by ECMWF. Available globally 
from 1900 to 2010.

Surface input Poli et al. (2016)

ORA-20C Ocean/Sea ice Produced by ECMWF. Available globally 
from 1900 to 2009.

Surface and subsurface input de Boisseson et al., (2018)

SODA2.2.4 Ocean Produced by U. Maryland. Available 
globally from 1871 to 2010.

Surface and subsurface input Giese et al. (2016)

CHOR Ocean Produced by CMCC. Available globally 
from 1900 to 2010.

Surface and subsurface input Yang et al. (2017)

EN4.2.2 Ocean Produced by Met Office. Available 
globally from 1900 to the present.

Subsurface input Good et al. (2013)

CERA-20 Atmosphere/Land/
Ocean/Sea ice

Produced by ECMWF. Available globally 
from 1901 to 2010.

Surface and subsurface input Laloyaux et al. (2018)
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1st motivation: coupled processes

(Laloyaux et al. 2018)
Hovmoller time series of spatially high-passed filtered SST (contours) and wind 
stress (shading) at 1°N in the eastern Pacific from April 1973 to April 1974.
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2nd motivation: continuous reconstruction

(Laloyaux et al. 2018)
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Norwegian Earth System model (NorESM) Data assimilation (EnKF)

Observations

30 members

CAM

BLOM

CICE CISM CLM

RTM

chemistry/aerosols

HAMOCC

Norwegian Climate Prediction Model (NorCPM) 

• NorESM1-ME (Bentsen et al. 2013)
• CMIP5 forcings
• 2° for atmosphere and land components
• 1° for ocean and ice components
• 30 ensemble members

(Counillon et al., 2016)
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Which data did we assimilate in CoRea1860+? 
• The HadISST2 product (accounts for bias between measurements and provide a good uncertainty estimate)

• SST data is the most primary instrumental data prior to satellite era

• The use of new data in the course of the reanalysis introduces discontinuity

(O’Carroll et al. 2019)
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T2, S2, DP2

Ocean bottom

update via 
covariance

T1, S1, DP1

OBS: SSTASurface

Key features: 
• Anomaly assimilation (Carrassi et al., 2014), limiting the emergence of bias in the deep ocean
• Flow-dependent covariance (i.e., changing with the climate regime)
• Conserving heat/salt content (Wang et al., 2017)
• Isopycnal assimilation efferently use surface observations (Gavart and De Mey,1997)
• Small ensemble size (vertical localisation, Wang et al., 2022)

How did it work?



Ensemble Kalman filter (EnKF)

(Evensen et al., 2022) 

Probabilistic characteristic: 
• uncertainty quantification through Monte-Carlo ensembles
• flow-dependent forecast error covariances



Offline EnKS

Time
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Filter analyses

Smoother analyses

Observations

• Past and present observations as ensemble filter
• Future observations via cross-time error covariances
• Numerically cheap
• Tested in Lorenz 1963 (Dong et al., 2023)
• Investigate whether the offline EnKS as post-processing approach can improve long-term climate reanalyses



Experiments in NorCPM

Experiment Idealised twin Real-world

Pre-existing reanalysis 1980-2010 (Wang et al., 2022) 1950-2010 (Counillon et al., 2016) 

Assimilated data SST observations in three months in ‘future’

R Inflation factor 1 1, 2, 4, 6, 8, 10, 16 or 25

Spatial localization Gaspari and Cohn, (1999) and Wang et al., (2017) 

Temporal localization γn, where γ signifies the decay rate per month and n denotes the time lag (Dong et al., 
2021;2023), γ = 0.01, 0.05, 0.1, 0.2, 0.3, and 0.5

Validation dataset Truth Independent datasets: EN4.2.1, ARMOR-3D 
L4, ORAS5

Metrics Mean squared skill score (MSSS)



Twin experiments: Globally averaged MSSS (monthly)

Global ocean circulations 

• Optimal results are obtained with the temporal parameter of 0.1 (e-folding time: 13.0 days).
• Assimilating future SST data is more efficient for MLD and T300 than SSH.



Twin experiments: monthly T300, SSH and MLD
RM

SE



Twin experiments: monthly T300, SSH and MLD
RM

SE
M
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S



Real experiments: globally averaged MSSS (yearly)

• Optimal results are obtained with the R inflation factor of 4 (when γ = 0.1)
• Assimilating future SST data is more efficient for MLD and SSH than T300



Real experiments: Yearly T300, SSH and MLD
RM

SE
M

SS
S



Real experiments: reliability (Desroziers et al. , 2005)

• Smoother reduces both RMSE and total error (i.e., combination of obs and background errors)
• Reliability is not significantly change



• Tested an offline ensemble Kalman smoother technique for climate reanalysis.
• Developed a methodology to fine temporal localisation parameters and R inflation factors. 
• The results seem promising to improve the accuracy of the reanalysis.
• Different performance in twin experiments and real applications, due to many factors 

• Truth is unknown
• Inconsistency between datasets
• Model biases

• Application to deterministic reanalyses

o Refer to the EnOI, a simplified variant of the EnKF (Evensen, 2003, Counillon et al., 2009)

Take-home messages


