
• Latent-Space Geomodeling:
Offline-trained Generative Adversarial Networks 
(GANs) generate plausible geological 
realizations consistent with field knowledge.
• Simulator-Trained EM Model:

A Forward Neural Network (FNN) emulates ultra-
deep LWD EM tool responses, enabling the 
assimilation of modern real-time observations.
• Ensemble-Based Model Updating:

An ensemble of latent vectors is incrementally 
updated as new data arrives, refining posterior 
geological uncertainty.
• Decision Support via Dynamic Programming:

A Discrete Dynamic Programming (DDP) method 
selects steering actions that optimize global 
well placement under uncertainty.
• Generative Drilling Workflow Benchmark:

A modular prototype is demonstrated on a 
specially prepared 3D geomodel benchmark 
tailored for geosteering, establishing a 
performance reference for future improvements.
• Interactive Web-Based Demonstration:

An interactive app showcases the real-time 
behavior of the prototype and illustrates the key 
concepts of the workflow.
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Offline GAN training
The GAN’s generator (!!) and discriminator (") are trained 
in an adversarial min-max game. The generator learns to 
produce realistic geomodel patches—resembling 
samples from the training 3D geomodels—from latent 
vectors drawn from a multivariate Gaussian distribution. 
Thanks to its multi-scale convolutional architecture, small 
perturbations in the latent vectors yield smooth variations 
in the generated output. The GAN is trained using the 
Wasserstein loss:

Figure 4: JS estimates for an MLP generator (upper left) and a DCGAN generator (upper

right) trained with the standard GAN procedure. Both had a DCGAN discriminator. Both
curves have increasing error. Samples get better for the DCGAN but the JS estimate

increases or stays constant, pointing towards no significant correlation between sample

quality and loss. Bottom: MLP with both generator and discriminator. The curve goes up

and down regardless of sample quality. All training curves were passed through the same

median filter as in Figure 3.

to stare at the generated samples to figure out failure modes and to gain information
on which models are doing better over others.

However, we do not claim that this is a new method to quantitatively evaluate
generative models yet. The constant scaling factor that depends on the critic’s
architecture means it’s hard to compare models with di↵erent critics. Even more,
in practice the fact that the critic doesn’t have infinite capacity makes it hard to
know just how close to the EM distance our estimate really is. This being said,
we have succesfully used the loss metric to validate our experiments repeatedly and
without failure, and we see this as a huge improvement in training GANs which
previously had no such facility.

In contrast, Figure 4 plots the evolution of the GAN estimate of the JS distance
during GAN training. More precisely, during GAN training, the discriminator is
trained to maximize

L(D, g✓) = Ex⇠Pr [logD(x)] + Ex⇠P✓ [log(1�D(x))]

which is is a lower bound of 2JS(Pr,P✓)�2 log 2. In the figure, we plot the quantity
1
2L(D, g✓) + log 2, which is a lower bound of the JS distance.

This quantity clearly correlates poorly the sample quality. Note also that the
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The prior consists of 250 model vectors sampled from 
a Gaussian distribution perturbed towards the 
synthetic truth. It translates to an ensemble of GAN-
geomodels with a large uncertainty in facies:

Drilling starts 
at x100

The white 
outline is 
synthetic truth

40% 
probability of 
sand at ★

Full mapping sequence

-1.2, 0.4, 0.1 … -0.4

0.9, 0.3, -0.4  … -0.1

1.2, -0.2, 0.5 … 1.0

1.2, -0.3, 1.6 … 0.1

… … … …

Model vector Facies Resistivity EM logs
GAN FNNprojection

Ensemble of
GAN “images” / GAN-geomodels
for optimization

Ensemble of
synthetic 
logs for 
data-
assimilation

Data-acquisition 
points
for modelling

Ensemble 
of model 

vectors

AI forward model

• Find full best trajectory for each realization using DDP
• Take the robust decision only for the next segment:

• Consider allowed alternatives (up/down/straight/stop)
• Choose the alternative giving the best predicted value on average

Global optimization with DDP

Numerical example
The figure shows sequential steps applying the workflow.
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Reproducibility

• Distinguish open-source portal:
https://github.com/geosteering-no 
• Open workflow demo with ultra-deep EM tool:

https://github.com/geosteering-
no/DISTINGUISH-WF 
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As new measurements arrive, a non-localized 
Ensemble Kalman Filter (EnKF) assimilates them 
sequentially. The statistical misfit between predicted 
and observed logs drives Bayesian updates of the 
latent vectors, as defined by the full mapping 
sequence from latent space to predictions.
The update of latent vectors propagates through the 
GAN sub-sequence, resulting in global modifications 
to the geomodels and enabling probabilistic look-
ahead predictions for optimization [1].
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A Forward Neural Network (FNN) approximates a 1D 
electromagnetic solver for an ultra-deep EM logging tool. It 
takes a column of 128 horizontal and vertical resistivities, 
including tool position, and predicts 18 measurements 
under 6 configurations. The FNN is trained to match 
synthetic logs [4] simulated by a high-fidelity 1D model [5] 
for columns from 3D geomodels.
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DISTINGUISH: Probabilistic decision-support

Applied Problem Statement:
In real-time drilling operations, such as for 
hydrocarbon extraction, geothermal wells, or 
infrastructure tunneling, engineers must 
continuously adjust the well trajectory to remain 
within a targeted geological zone [1]. This 
process, known as geosteering, is complicated 
by uncertainty in the geology ahead of the drill bit.
Domain Challenge:
Most current logging tools cannot measure 
subsurface properties in front of the drill bit. 
Typical ultra-deep electromagnetic (EM) Logging-
While-Drilling (LWD) measurements still provide 
only localized and indirect information, which 
requires processing and interpretation to enhance 
geological understanding. Typical current 
workflows do not systematically integrate data 
into models during drilling [2], resulting in 
potentially suboptimal steering decisions under 
uncertainty.
Goal:
We develop an AI-enhanced, data-assimilation-
based geosteering workflow that integrates real-
time sensor data with latent-space geomodels to 
improve decision-making under uncertainty 
through robust optimization.
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