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Introduction DISTINGUISH: Pr

Applied Problem Statement:

In real-time drilling operations, such as for
hydrocarbon extraction, geothermal wells, or
infrastructure tunneling, engineers must
continuously adjust the well trajectory to remain
within a targeted geological zone [1]. This
process, known as geosteering, is complicated
by uncertainty in the geology ahead of the drill bit.

Domain Challenge:

Most current logging tools cannot measure
subsurface properties in front of the drill bit.
Typical ultra-deep electromagnetic (EM) Logging-
While-Drilling (LWD) measurements still provide
only localized and indirect information, which
requires processing and interpretation to enhance
geological understanding. Typical current
workflows do not systematically integrate data
into models during drilling [2], resulting in
potentially suboptimal steering decisions under
uncertainty.

Goal:

We develop an Al-enhanced, data-assimilation-
based geosteering workflow that integrates real-
time sensor data with latent-space geomodels to
improve decision-making under uncertainty
through robust optimization.
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Offline GAN training
The GAN'’s generator (gg) and discriminator (D) are trained
in an adversarial min-max game. The generator learns to
produce realistic geomodellgatches—resemblm%
samples from the training 3D geomodels—from latent
vectors drawn from a multivariate Gaussian distribution.
Thanks to its multi-scale convolutional architecture, small
perturbations in the latent vectors yield smooth variations
{thhe gene‘raTed output. The GAN is trained using the
asserstein loss: P : ;
Global optimization with DDP
L(D, gg) = Eynp, [log D(z)] + Esnp,[log(1 — D(2))]
* Find full best trajectory for each realization using DDP
"“,’;,";‘Z::ﬁ" ey * Take the robust decision only for the next segment:
e = e '." « Consider allowed alternatives (up/down/straight/stop)
ector S ] * Choose the alternative giving the best predicted value on average
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The figure shows sequential steps applying the workflow.

Offline FNN EM model training

A Forward Neural Network (FNN) approximates a 1D
electromagnetic solver for an ultra-deep EM logging tool. It
takes a column of 128 horizontal and vertical resistivities,
including tool position, and predicts 18 measurements
under 6 configurations. The FNN is trained to match
synthetic logs [4] simulated by a high-fidelity 1D model [5]
for columns from 3D geomodels.
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Key contributions

* Latent-Space Geomodeling:
Offline-trained Generative Adversarial Networks
(GANSs) generate plausible geological
realizations consistent with field knowledge.

* Simulator-Trained EM Model:
A Forward Neural Network (FNN) emulates ultra-
deep LWD EM tool responses, enabling the
assimilation of modern real-time observations.

* Ensemble-Based Model Updating:
An ensemble of latent vectors is incrementally
updated as new data arrives, refining posterior
geological uncertainty.

* Decision Support via Dynamic Programming:
A Discrete Dynamic Programming (DDP) method
selects steering actions that optimize global
well placement under uncertainty.

* Generative Drilling Workflow Benchmark:
A modular prototype is demonstrated on a
specially prepared 3D geomodel benchmark
tailored for geosteering, establishing a
performance reference for future improvements.
* Interactive Web-Based Demonstration:
An interactive app showcases the real-time
behavior of the prototype and illustrates the key
concepts of the workflow.
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As new measurements arrive, a non-localized
Ensemble Kalman Filter (EnKF) assimilates them
sequentially. The statistical misfit between predicted
and observed logs drives Bayesian updates of the
latent vectors, as defined by the full mapping
sequence from latent space to predictions.

The update of latent vectors propagates through the
GAN sub-sequence, resulting in global modifications
to the geomodels and enabling probabilistic look-
ahead predictions for optimization [1].
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Reproducibility

« Distinguish open-source portal:
https://github.com/geosteering-no

* Open workflow demo with ultra-deep EM tool:
https://github.com/geosteering-
no/DISTINGUISH-WF
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