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Schematic of a Sequential Ensemble Filter

1. Use model to advance ensemble (3 members here) to time at
which next observation becomes available.

Ensemble state Ensemble state
estimate after using at time of next
previous observation observation
(analysis) (prior)

>

t
-x-k/ — {k+1

— e 4




Scalar
Observation
Space

Schematic of a Sequential Ensemble Filter

2. Get prior ensemble sample of observation, y = A(x), by
applying forward operator h to each ensemble member.

Theory: observations
from instruments with
uncorrelated errors can
be done sequentially.

Model
Space

Can think about single
observation without (too
much) loss of generality.



Schematic of a Sequential Ensemble Filter

3. Get observed value and observation likelihood from
observing system.
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Schematic of a Sequential Ensemble Filter

4. Find the increments for the prior observation ensemble
(this is a scalar problem for uncorrelated observation errors).
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Schematic of a Sequential Ensemble Filter

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments.
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Schematic of a Sequential Ensemble Filter

Repeat sequentially for each observation available at this time.
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Schematic of a Sequential Ensemble Filter

When all observations have been assimilated, advance ensemble to next time
with observations.
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Quantile Conserving Ensemble Filters in Observation Space

A nearly general solution for the observation space step:
(Anderson, 2022, MWR 150, 1061-1074).
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Quantile Conserving Ensemble Filter, Observation Update

Given a prior ensemble estimate of an observed quantity, v.
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Quantile Conserving Ensemble Filter, Observation Update

Fit a continuous PDF from an appropriate distribution family
and find the corresponding CDF.

Probability Density Function (PDF)
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Quantile Conserving Ensemble Filter, Observation Update

Compute the quantile of ensemble members;
just the value of CDF evaluated for each member.
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Quantile Conserving Ensemble Filter, Observation Update

Continuous likelihood for this observation.

Probability Density Function (PDF)
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Quantile Conserving Ensemble Filter, Observation Update

Bayes tells us that the continuous posterior PDF
is the product of the continuous likelihood and prior.
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Quantile Conserving Ensemble Filter, Observation Update

Posterior ensemble members have same quantiles as prior.
This is quantile function, inverse of posterior CDF.
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Quantile Conserving Ensemble Filter, Observation Update

For normal prior and likelihood, this is identical to existing
deterministic Ensemble Adjustment Kalman Filter (EAKF).
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The Bounded Normal Rank Histogram Distribution

Can use any distribution family for prior.
What if we don’t know what family to use?
Use non-parametric continuous prior.

Rank Histogram piecewise constant distribution.

Could also use a variety of standard kernel density estimates, but
these may have cost challenges.




The Bounded Normal Rank Histogram Distribution
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The Bounded Normal Rank Histogram Distribution
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* Place (ens_size + 1)t mass between adjacent ensemble members.

* Reminiscent of rank histogram evaluation method.




The Bounded Normal Rank Histogram Distribution
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* Place (ens_size + 1)t mass between adjacent ensemble members.

* Reminiscent of rank histogram evaluation method.




The Bounded Normal Rank Histogram Distribution
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* Place (ens_size + 1)t mass between adjacent ensemble members.
* Reminiscent of rank histogram evaluation method.




The Bounded Normal Rank Histogram Distribution
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* Place (ens_size + 1)t mass between adjacent ensemble members.

* Reminiscent of rank histogram evaluation method.




The Bounded Normal Rank Histogram Distribution
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* Partial gaussian kernels on tails, Normal(tail_mean, ens_sd).

* tail_mean selected so that (ens_size + 1)1 mass is in tail.




Rank Histogram Prior PDF and CDF
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Rank Histogram Continuous Prior

Unbounded has normal tails.
Quantiles are exactly U(0, 1) by construction.
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Bounded Rank Histogram Continuous Prior

Bounded has truncated tail.
Quantiles are exactly U(0, 1) by construction.
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Rank Histogram Prior PDF and CDF with Lower Bound
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Linear Regression can Wreck Things

Linear regression can destroy benefits of new observation method.
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Standard EnKF: Challenged by Non-Gaussian and Nonlinear Relations

Prior for normal-gamma distribution
with 100 member ensemble.

Joint Prior Distribution
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Correct distribution contours are 1, 5, 10, 20, 40, 60, 80% of max for all figures.




Standard EnKF: Challenged by Non-Gaussian and Nonlinear Relations

Prior for normal-gamma distribution Posterior ensemble has problems.
with 100 member ensemble.

Joint Prior Distribution Joint Analysis Distribution
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Standard EnKF: Challenged by Non-Gaussian and Nonlinear Relations

Standard Joint Distribution
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Solution, Transform Marginals: Step 1: Compute Quantiles

Pick an appropriate continuous prior distribution. ’ __Quantile Joint Distribution _ _
*  Prior £ )
Compute CDF for each member to get quantiles. ok . * *g%
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Solution, Transform Marginals: Step 2: Probit Transform of Quantiles

Quantile function for the standard Normal is probit. , __Probit Function (Quantile of Standard Normal)
= Probit

3t Normalized Logit

Transforms U(0O, 1) to unbounded.

Marginal distributions should be N(O, 1).

Probit

This is type of Gaussian anamorphosis.

Novelty is what is transformed, not how.
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Regression in Probit-Transformed Quantile Space

Do the regression of the observed probit increments
onto the unobserved probit ensemble. % Prior

% Posterior
2 |/ Increment
= =Regression Line

Probit Joint Distribution

Linear regression is best unbiased linear estimator
(BLUE) in this space.
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Novel, General Solutions for Nonlinear, Non-Gaussian Problems

Prior for normal-gamma distribution Bounds enforced. Nonlinear
with 100 member ensemble. aspect respected.

Joint Prior Distribution Joint Analysis Distribution
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Novel, General Solutions for Nonlinear, Non-Gaussian Problems

Prior for normal-gamma distribution Bounds enforced. Nonlinear
with 100 member ensemble. aspect respected.
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Implement Regression in a Transformed Space

Can update unobserved variables with regression in a transformed space for each
state variable.

(Anderson, 2023, MWR 151, 2759-2777)
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Implement Regression in a Transformed Space

yE , y& xF n=1, ...N are prior and posterior (analysis) ensembles of observed variable y and

unobserved variable x

F, and F; are continuous CDFs appropriate for x and y

®(z) is the CDF of the standard normal, ®~1(p) is the probit function
= o7 HE (xp)] 7, = @7 E ()] and ¢ = @[ E] (3%)] are probit space <=

Ay, = 72 — ¥ is probit space observation increment

AX, = %Ayn regress increments in probit space (eq. 5 Anderson 2003)

x¢ = xF + A%, is posterior ensemble in probit space

= (EP) " [@(x9)] is posterior ensemble




Mixed Distributions: A Challenge for DA

Mixed Distributions: Have both discrete and continuous probability distribution parts.

Precipitation forecast 1s an example:
Discrete probability of zero rain (50%),
Continuous distribution for all non-zero amounts,
(zero probability of exactly any given amount except 0).

Important for some tracers and many sources (anthropogenic sources, wildfires, ...).

Key: Define ‘continuous’ distributions that support duplicate ensemble members.

(Anderson et al., MWR 152, 2111-2127)




Mixed Distributions: Bounded Rank Histogram Extension

Mixed CDF for 8 prior ensemble members. An ensemble
member at 0 and duplicate ensemble members at 1.4 and
4.0 lead to finite probability at those points. Modified CDF
defines non-standard value at the jumps (the green
midpoint on the magenta lines).

Continuous CDF for 5 prior ensemble members, bounded
below at 0.
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Low-Order Tracer Advection Model

Each grid point has Lorenz-96 state, tracer concentration, tracer source/sink.
Multiple of state treated as wind, conservatively advects tracer.
Example: single time constant source at grid point 1.
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Low-Order Tracer Advection Model Example: EAKF (Normal)

Each grid point has Lorenz-96 state, tracer concentration, tracer source/sink.
Multiple of state treated as wind, conservatively advects tracer.
Example: single time constant source at grid point 1.

Analysis: Tracer Concentration 14

3 . — ("Observe state and )
nse Ivble Members (80) ) .
AN |~ Ensefnble Mear); | . | | concentration infrequently
. - 4 N T TrdeState 8 at each point.
1F Y Ry i \‘;.w \ Al & \| ‘“ N ';.‘ il D | \ A%
\ \\ ' ,‘ .ll. -‘:' . I“ \ 1 ] N\ \ “‘x & \ la l ; . .
o} i '“u“&; ' ' | Concentration error is
: : : : : ! \_truncated normal. Y,
0 20 40 60 80 100 120
3 Analysis: Tracer Concentration 36
Ensemble Members (80) EAKF has large bias for
ot | semble Mea { tracers.
‘ !‘- | ate
1r LA R Can’t go to all zeros.
A
0 — :
- - : - : . Some negative values.
0 20 40 60 80 100 120

model "days" (1000 timesteps)




Low-Order Tracer Advection Model Example: QCEFF with BNRH

Each grid point has Lorenz-96 state, tracer concentration, tracer source/sink.
Multiple of state treated as wind, conservatively advects tracer.
Example: single time constant source at grid point 1.
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Low-Order Tracer Advection Model Example: Concentration RMSE

QCEFF Filters (Dark blue, Green) have smaller RMSE than traditional filters across the domain.
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Low-Order Tracer Advection Model: Concentration Rank Histograms

Good ensembles have uniform rank histograms. Makes interpretation easy.

Normal is highly skewed. QCEFF is close to uniform.
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Low-Order Tracer Advection Model: Source Estimation

If sources are unknown, can also estimate them.

Example: single time constant source at grid point 1, zero source all other gridpoints.

EAKF for nonzero source grid point 1. EAKF for a zero source grid point 21.

Source gridpoint 21 EAKF_80_analysis.nc
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Low-Order Tracer Advection Model: Source Estimation

If sources are unknown, can also estimate them.

Example: single time constant source at grid point 1, zero source all other gridpoints.

QCEFF for nonzero source grid point 1. QCEFF for a zero source grid point 21.

Source gridpoint 1 PQBNRH_80_analysis.nc Source gridpoint 21 PQBNRH_80_analysis.nc
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First Results in Large Chemistry Model: Ben Gaubert’s Global CO DA
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Assimilation verification with MOPITT XCO

MOPITT XCO (May 2018)
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Likelihood; Cumulative Prob.

QCEF Observation Update, Discrete Prior Distribution

9-member prior ensemble, symmetric around origin.
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Likelihood; Cumulative Prob.

QCEF Observation Update, Discrete Prior Distribution

9-member prior ensemble, symmetric around origin.
First example likelihood, Normal(-1, 1). Posterior ensemble counts shown in blue.
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QCEF Observation Update, Discrete Prior Distribution

9-member prior ensemble, symmetric around origin.
First example likelihood, Normal(-1, 1). Posterior ensemble counts shown in blue.
Second example likelihood, Normal (1, 1).

Definition of CDF:

1}k - Prior CDF
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QCEF Observation Update, Discrete Prior Distribution

9-member prior ensemble, symmetric around origin.
First example likelihood, Normal(-1, 1). Posterior ensemble counts shown in blue.
Second example likelihood, Normal (1, 1).
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QCEF Observation Update, Discrete Prior Distribution

Define a modified CDF to avoid the bias.

' — T 1 ' Definition of Modified CDF:
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QCEF Observation Update, Mixed Prior Distribution

A 12-member ensemble from a mixed distribution.
Duplicate members define a discrete point, 6 members at zero here.
Other members define a normal distribution; 50% of the total probability.
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QCEF Observation Update, Mixed Prior Distribution

A 12-member ensemble from a mixed distribution.
Duplicate members define a discrete point, 6 members at zero here.
Other members define a normal distribution; 50% of the total probability.
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QCEF Observation Update, Mixed Prior Distribution

A 12-member ensemble from a mixed distribution.
Duplicate members define a discrete point, 6 members at zero here.
Other members define a normal distribution; 50% of the total probability.
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g |7 Posterior 1 -.2564 4123
5 Posterior 2 2564 4123
-'8“0.2 - \ /
- ] But all identical prior ensemble members must
move together. Clearly incorrect for some

A5 - 0.5 0 05 1 15 applications.




QCEF Observation Update, Mixed Prior Distribution

A 12-member ensemble from a mixed distribution.
Duplicate members define a discrete point, 6 members at zero here.
Other members define a normal distribution; 50% of the total probability.

1k

o
0]
T

o
o
L]

o
N
T

o
N
T

— Prior Multi-valued CDF
- - Likelihood <
— Likelihood >

Likelihood; Cumulative Prob.
o

-1.5

Multivalued CDF is also unbiased.

Mean SD
Posterior 1 -.3023 4147
Posterior 2 3023 4147

- J

Ensemble members with same prior value can
have different posterior values. Can lead to balance

iIssues.



QCEF Observation Update, Mixed Prior Distribution: Summary

Definition of the CDF is important for QCEFF applications in discrete and mixed distributions.
Standard definition leads to bias towards larger values.

Other definitions have pros and cons.

However, still much better than normal distributions for certain problems.

Anderson et al., 2024, MWR, 2111-2127.




Closing Thoughts

Earth system DA problems are nonlinear, non-Gaussian, have mixed distributions:
Tracer concentration and sources;
Parameter estimation;
Sea ice, snow, other depths and concentrations.

DART now provides QCEFF methods:
Arbitrary distributions in observation space;
Arbitrary univariate spatial transforms before updating state variables;
Support for duplicate ensemble members.

Initial application to large models is promising:
Generally improved forecast fit to observations;
Incremental computational cost generally O(0.1)

Try it out at https://dart.ucar.edu




Questions?

The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or

NCAR | National Center for

; recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science
UCAR | Atmospheric Research P P (s) Y

Foundation.

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.



Distributions for Important Forecast Quantities

When precipitation will Lo A46° ¢ 5% : 3%
occur ¥ : '

Chance of precipitation 70 ! 2%

Where precipitation will : AT 7 A =
occur ‘ : : : ™

Type of precipitation
High temperature
Amount of precipitation

Chance of different
amounts of precipitation

Low temperature

Wind speed

Humidity levels

What time of day the high

temperature will occur 245

What time of day the low e & 7 % Z
temperature will occur g ‘ G ‘ 1%

How cloudy it will be 38 o, 38% e §F o

Wind direction 79 49 31°, 2655 2ol

(BB R E—

Extremely Very Somewhat A little Not at all
important important important important important

Fic. 5. Respondents’ rating of importance for different potential components
of weather forecasts (n = 1,465). The survey question asked “How impor-
tant is it to you to have the information listed below as part of a weather
forecast?”

300 BILLION SERVED

Sources, Perceptions, Uses, and Values
of Weather Forecasts

BY JerFREY K. LAZO, ReBeccA E. MoRss, AND JuLE L. DEMUTH

A nationwide survey indicates that the U.S. public obtains several hundred billion forecasts
each year, generating $31.5 billion in benefits compared to costs of $5.1 billion.

very day, the U.S. weather enterprise collectively Research on aspects of these issues has been con-
disseminates numerous weather forecasts tothe  ducted for specific geographical areas (e.g., Saviers
U.S. public through various media. Considering and Van Bussum 1997; Lazo and Chestnut 2002), for
the range of forecasts generated at a variety of spatial ~ specific events or weather phenomena and decision-
and temporal scales, the array of forecast providers making situations (e.g., Katz and Murphy 1997;
and communication channels. and the size and diver- ~ Anderson-Berrv et al. 2004: Stewart et al. 2004: Call

BAMS. 2009, 785-798.




Forecast Distributions for Important Quantities

When precipitation will ™ 460 5 0] : 3% N

occur

Chance of precipitation

Where precipitation will
occur

Normal (N)

Type of precipitation
High temperature

Amount of precipitation

Chance of different

1.0
amounts of precipitation ]

Low temperature

Wind speed
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Fic. 5. Respondents’ rating of importance for different potential components
of weather forecasts (n = 1,465). The survey question asked “How impor-
tant is it to you to have the information listed below as part of a weather
forecast?”




Forecast Distributions for Important Quantities

When precipitation will
occur

Chance of precipitation

Where precipitation will
occur

Wrapped Normal (WN)

Type of precipitation
High temperature

Amount of precipitation

Chance of different
amounts of precipitation

Low temperature

Wind speed

Humidity levels
What time of day the high
temperature will occur

What time of day the low
temperature will occur

How cloudy it will be 38 189 389,

Wind direction 79 49 31°,

(BB R E—

Extremely Very Somewhat A little Not at all
important important important important important

Fic. 5. Respondents’ rating of importance for different potential components
of weather forecasts (n = 1,465). The survey question asked “How impor-
tant is it to you to have the information listed below as part of a weather
forecast?”




Forecast Distributions for Important Quantities

When precipitation will
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Chance of precipitation

Where precipitation will
occur

Type of precipitation
High temperature
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Fic. 5. Respondents’ rating of importance for different potential components X 67'\(\
of weather forecasts (n = 1,465). The survey question asked “How impor- <@

tant is it to you to have the information listed below as part of a weather
forecast?”




Forecast Distributions for Important Quantities
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Type of precipitation
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temperature will occur g ‘ G ‘ 1%

How cloudy it will be 38 o, 38% e §F o

Wind direction 79 49 31°, 2655 2ol
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Extremely Very Somewhat A little Not at all
important important important important important

Fic. 5. Respondents’ rating of importance for different potential components
of weather forecasts (n = 1,465). The survey question asked “How impor-
tant is it to you to have the information listed below as part of a weather
forecast?”
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Forecast Distributions for Important Quantities

When precipitation will car o o :
occur ¥ M4 X ) %

Chance of precipitation

Where precipitation will : AT 7 7 =
occur ; e ¢ /0 3%

W o iliciion Mixed doubly bounded (MD)

Amount of precipitation
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amounts of precipitation
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What time of day the low e & 7 % ;
temperature will occur g ‘ G ‘ 1%
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Fic. 5. Respondents’ rating of importance for different potential components
of weather forecasts (n = 1,465). The survey question asked “How impor-
tant is it to you to have the information listed below as part of a weather
forecast?”




Forecast Distributions for Important Quantities

When precipitation will ™ 460 5 0] : 3% N
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Where precipitation will
occur
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High temperature

MB Wrapped Normal (WN)
MB

Amount of precipitation
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Fic. 5. Respondents’ rating of importance for different potential components
of weather forecasts (n = 1,465). The survey question asked “How impor-
tant is it to you to have the information listed below as part of a weather
forecast?”




