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Schematic of a Sequential Ensemble Filter

Ensemble state 
estimate after using 
previous observation 
(analysis)

Ensemble state 
at time of next 
observation 
(prior)

1. Use model to advance ensemble (3 members here) to time at 
which next observation becomes available.



Schematic of a Sequential Ensemble Filter
2. Get prior ensemble sample of observation, y = h(x), by 

applying forward operator h to each ensemble member.

Theory: observations 
from instruments with 
uncorrelated errors can 
be done sequentially.

Can think about single 
observation without (too 
much) loss of generality.
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Schematic of a Sequential Ensemble Filter
3. Get observed value and observation likelihood from 

observing system.
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Schematic of a Sequential Ensemble Filter
4. Find the increments for the prior observation ensemble                  

(this is a scalar problem for uncorrelated observation errors).
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Schematic of a Sequential Ensemble Filter
5. Use ensemble samples of y and each state variable to linearly 

regress observation increments onto state variable increments.
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Schematic of a Sequential Ensemble Filter

Repeat sequentially for each observation available at this time.
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Schematic of a Sequential Ensemble Filter 
When all observations have been assimilated, advance ensemble to next time 
with observations.
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Quantile Conserving Ensemble Filters in Observation Space
A nearly general solution for the observation space step:
(Anderson, 2022, MWR 150, 1061-1074).

Scalar 
Observation 
Space

Model 
Space



Quantile Conserving Ensemble Filter, Observation Update

Given a prior ensemble estimate of an observed quantity, y.

Probability Density Function (PDF)



Quantile Conserving Ensemble Filter, Observation Update

Fit a continuous PDF from an appropriate distribution family
and find the corresponding CDF. 

This example uses a normal PDF.

Probability Density Function (PDF) Cumulative Distribution Function (CDF)



Quantile Conserving Ensemble Filter, Observation Update

Compute the quantile of ensemble members;
just the value of CDF evaluated for each member.

This example uses a normal PDF.

Probability Density Function (PDF) Cumulative Distribution Function (CDF)



Quantile Conserving Ensemble Filter, Observation Update

Continuous likelihood for this observation.

This example uses a normal PDF.

Probability Density Function (PDF) Cumulative Distribution Function (CDF)



Quantile Conserving Ensemble Filter, Observation Update

Bayes tells us that the continuous posterior PDF 
is the product of the continuous likelihood and prior. 

Normal times normal is normal.

p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫

Probability Density Function (PDF) Cumulative Distribution Function (CDF)



Quantile Conserving Ensemble Filter, Observation Update

Posterior ensemble members have same quantiles as prior. 
This is quantile function, inverse of posterior CDF. 

This example uses a normal PDF.

Probability Density Function (PDF) Cumulative Distribution Function (CDF)



Quantile Conserving Ensemble Filter, Observation Update

For normal prior and likelihood, this is identical to existing 
deterministic Ensemble Adjustment Kalman Filter (EAKF).

Probability Density Function (PDF) Cumulative Distribution Function (CDF)



The Bounded Normal Rank Histogram Distribution

Can use any distribution family for prior.

What if we don’t know what family to use?

Use non-parametric continuous prior.

Rank Histogram piecewise constant distribution.

Could also use a variety of standard kernel density estimates, but 
these may have cost challenges.
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The Bounded Normal Rank Histogram Distribution

Have a prior ensemble for a state variable (like wind).
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The Bounded Normal Rank Histogram Distribution

• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.

1/6 of 
probability.



−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

PriorPr
ob

ab
ilit

y 
D

en
si

ty
The Bounded Normal Rank Histogram Distribution

• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.
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• Place (ens_size + 1)-1 mass between adjacent ensemble members.
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The Bounded Normal Rank Histogram Distribution

• Partial gaussian kernels on tails, Normal(tail_mean, ens_sd).
• tail_mean selected so that (ens_size + 1)-1 mass is in tail.

1/6 of 
probability.

1/6 of 
probability.



Rank Histogram Prior PDF and CDF



Rank Histogram Continuous Prior

Unbounded has normal tails.
Quantiles are exactly U(0, 1) by construction.



Bounded Rank Histogram Continuous Prior

Bounded has truncated tail.
Quantiles are exactly U(0, 1) by construction.



Rank Histogram Prior PDF and CDF with Lower Bound



Linear Regression can Wreck Things

Linear regression can destroy benefits of new observation method.
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Standard EnKF: Challenged by Non-Gaussian and Nonlinear Relations

Prior for normal-gamma distribution 
with 100 member ensemble.

Observed (Temperature)
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Correct distribution contours are 1, 5, 10, 20, 40, 60, 80% of max for all figures.



Standard EnKF: Challenged by Non-Gaussian and Nonlinear Relations

Prior for normal-gamma distribution 
with 100 member ensemble.

Posterior ensemble has problems.
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Standard EnKF: Challenged by Non-Gaussian and Nonlinear Relations

Example regression increment vectors: 
Don’t respect bounds,
Struggle with nonlinearity.
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Solution, Transform Marginals: Step 1: Compute Quantiles 

Pick an appropriate continuous prior distribution.

Compute CDF for each member to get quantiles.

Quantiles are U(0, 1) for appropriate prior.

This is the probability integral transform.



Solution, Transform Marginals: Step 2: Probit Transform of Quantiles 

Quantile function for the standard Normal is probit.

Transforms U(0, 1) to unbounded. 

Marginal distributions should be N(0, 1). 

This is type of Gaussian anamorphosis.

Novelty is what is transformed, not how.



Regression in Probit-Transformed Quantile Space

Do the regression of the observed probit increments
onto the unobserved probit ensemble. 

Linear regression is best unbiased linear estimator 
(BLUE) in this space. 



Novel, General Solutions for Nonlinear, Non-Gaussian Problems

Prior for normal-gamma distribution 
with 100 member ensemble.

Bounds enforced. Nonlinear 
aspect respected.
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Novel, General Solutions for Nonlinear, Non-Gaussian Problems

Prior for normal-gamma distribution 
with 100 member ensemble.

Bounds enforced. Nonlinear 
aspect respected.
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Implement Regression in a Transformed Space 

Can update unobserved variables with regression in a transformed space for each 
state variable.
(Anderson, 2023, MWR 151, 2759-2777)
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Implement Regression in a Transformed Space 

𝑦!
" , 𝑦!#, 𝑥!

", n=1, …N  are prior and posterior (analysis) ensembles of observed variable y and 

unobserved variable x

𝐹$
" and 𝐹%

" are continuous CDFs appropriate for x and y

Φ 𝑧 is the CDF of the standard normal, Φ&' 𝑝 is the probit function
'𝑥!
" = Φ&' 𝐹$

" 𝑥!
" , '𝑦!

" = Φ&' 𝐹%
" 𝑦!

" and '𝑦!# = Φ&' 𝐹%
" 𝑦!# are probit space

∆'𝑦! = '𝑦!# − '𝑦!
" is probit space observation increment

∆'𝑥! =
()!,#
()#,#

∆'𝑦! regress increments in probit space (eq. 5 Anderson 2003)

'𝑥!# = '𝑥!
" + ∆'𝑥! is posterior ensemble in probit space

𝑥!# = 𝐹$
" &' Φ '𝑥!# is posterior ensemble



Mixed Distributions: A Challenge for DA
Mixed Distributions: Have both discrete and continuous probability distribution parts.

Precipitation forecast is an example: 
Discrete probability of zero rain (50%),
Continuous distribution for all non-zero amounts, 
(zero probability of exactly any given amount except 0).

Important for some tracers and many sources (anthropogenic sources, wildfires, …).

Key: Define ‘continuous’ distributions that support duplicate ensemble members.

(Anderson et al., MWR 152, 2111-2127)



Mixed Distributions: Bounded Rank Histogram Extension

Continuous CDF for 5 prior ensemble members, bounded 
below at 0.

Mixed CDF for 8 prior ensemble members. An ensemble 
member at 0 and duplicate ensemble members at 1.4 and 
4.0 lead to finite probability at those points. Modified CDF 
defines non-standard value at the jumps (the green 
midpoint on the magenta lines).



Low-Order Tracer Advection Model

Each grid point has Lorenz-96 state, tracer concentration, tracer source/sink. 
Multiple of state treated as wind, conservatively advects tracer.
Example: single time constant source at grid point 1.

Constant 
Source.

Concentration can be 
zero far from source.



Low-Order Tracer Advection Model Example: EAKF (Normal)

Each grid point has Lorenz-96 state, tracer concentration, tracer source/sink. 
Multiple of state treated as wind, conservatively advects tracer.
Example: single time constant source at grid point 1.

Observe state and 
concentration infrequently 
at each point.

Concentration error is 
truncated normal. 

EAKF has large bias for 
tracers. 

Can’t go to all zeros.

Some negative values.



Low-Order Tracer Advection Model Example: QCEFF with BNRH

Each grid point has Lorenz-96 state, tracer concentration, tracer source/sink. 
Multiple of state treated as wind, conservatively advects tracer.
Example: single time constant source at grid point 1.

Observe state and 
concentration infrequently 
at each point.

Concentration error is 
truncated normal. 

Bounded Normal Rank 
Histogram with probit 
regression is unbiased. 

Can go to all zeros.

No negative values.



Low-Order Tracer Advection Model Example: Concentration RMSE
QCEFF Filters (Dark blue, Green) have smaller RMSE than traditional filters across the domain.

Location

Traditional 
Filters

QCEFF
Filters



Low-Order Tracer Advection Model: Concentration Rank Histograms
Good ensembles have uniform rank histograms. Makes interpretation easy.

Normal is highly skewed. QCEFF is close to uniform.



Low-Order Tracer Advection Model: Source Estimation
If sources are unknown, can also estimate them.

Example: single time constant source at grid point 1, zero source all other gridpoints.

EAKF for nonzero source grid point 1. EAKF for a zero source grid point 21.



Low-Order Tracer Advection Model: Source Estimation
If sources are unknown, can also estimate them.

Example: single time constant source at grid point 1, zero source all other gridpoints.

QCEFF for nonzero source grid point 1. QCEFF for a zero source grid point 21.



First Results in Large Chemistry Model: Ben Gaubert’s Global CO DA

Consistent reduction in root mean square 
errors.

Cheyenne cost increment about 10%.

Improvement should be greater for larger 
ensembles.



1. Control-DA
2. MOPITT-DA
3. CrIS-MOPITT-DA (EAKF) 
4. CrIS-MOPITT-DA-BNRH (Bounded 

Normal Rank Histogram (BNRH)

Assimilation verification with MOPITT XCO



QCEF Observation Update, Discrete Prior Distribution

9-member prior ensemble, symmetric around origin.

Definition of CDF:

𝐹 𝑥 = !

0 𝑖𝑓 𝑥 < 𝑥!
∑"#!
$ 𝑝" 𝑖𝑓 𝑥$ ≤ 𝑥 < 𝑥$%!, 𝑖 ∈ 1,⋯ , 𝐾 − 1
1 𝑖𝑓 𝑥 ≥ 𝑥&



QCEF Observation Update, Discrete Prior Distribution

9-member prior ensemble, symmetric around origin.
First example likelihood, Normal(-1, 1). Posterior ensemble counts shown in blue.

Definition of CDF:

𝐹 𝑥 = !

0 𝑖𝑓 𝑥 < 𝑥!
∑"#!
$ 𝑝" 𝑖𝑓 𝑥$ ≤ 𝑥 < 𝑥$%!, 𝑖 ∈ 1,⋯ , 𝐾 − 1
1 𝑖𝑓 𝑥 ≥ 𝑥&



QCEF Observation Update, Discrete Prior Distribution

9-member prior ensemble, symmetric around origin.
First example likelihood, Normal(-1, 1). Posterior ensemble counts shown in blue.
Second example likelihood, Normal (1, 1). 

Definition of CDF:

𝐹 𝑥 = !

0 𝑖𝑓 𝑥 < 𝑥!
∑"#!
$ 𝑝" 𝑖𝑓 𝑥$ ≤ 𝑥 < 𝑥$%!, 𝑖 ∈ 1,⋯ , 𝐾 − 1
1 𝑖𝑓 𝑥 ≥ 𝑥&



QCEF Observation Update, Discrete Prior Distribution

9-member prior ensemble, symmetric around origin.
First example likelihood, Normal(-1, 1). Posterior ensemble counts shown in blue.
Second example likelihood, Normal (1, 1). 

Definition of CDF:

𝐹 𝑥 = !

0 𝑖𝑓 𝑥 < 𝑥!
∑"#!
$ 𝑝" 𝑖𝑓 𝑥$ ≤ 𝑥 < 𝑥$%!, 𝑖 ∈ 1,⋯ , 𝐾 − 1
1 𝑖𝑓 𝑥 ≥ 𝑥&

Posteriors should be antisymmetric around origin.

Mean SD
Posterior 1 -.2222 .6428
Posterior 2 .4444 .4965
Algorithm is biased to larger values.



QCEF Observation Update, Discrete Prior Distribution

Define a modified CDF to avoid the bias. 

Definition of Modified CDF:

#𝐹 𝑥 =

0 𝑖𝑓𝑥 < 𝑥!
∑"#!$ 𝑝" 𝑖𝑓 𝑥$ < 𝑥 < 𝑥$%!, 𝑖 ∈ 1, … , 𝐾 − 1
1 𝑖𝑓 𝑥 > 𝑥&
∑"#!$'! 𝑝" +

(!
)

𝑖𝑓 𝑥 = 𝑥$

Posteriors are antisymmetric around origin.

Mean SD
Posterior 1 -.3333 .5863
Posterior 2 .3333 .5863



QCEF Observation Update, Mixed Prior Distribution

A 12-member ensemble from a mixed distribution.
Duplicate members define a discrete point, 6 members at zero here.
Other members define a normal distribution; 50% of the total probability.

Traditional CDF leads to biased posteriors.

Mean SD
Posterior 1 -.2214 .4308
Posterior 2 .5281 .3727



QCEF Observation Update, Mixed Prior Distribution

A 12-member ensemble from a mixed distribution.
Duplicate members define a discrete point, 6 members at zero here.
Other members define a normal distribution; 50% of the total probability.

Modified CDF is unbiased.

Mean SD
Posterior 1 -.2564 .4123
Posterior 2 .2564 .4123



QCEF Observation Update, Mixed Prior Distribution

A 12-member ensemble from a mixed distribution.
Duplicate members define a discrete point, 6 members at zero here.
Other members define a normal distribution; 50% of the total probability.

Modified CDF is unbiased.

Mean SD
Posterior 1 -.2564 .4123
Posterior 2 .2564 .4123

But all identical prior ensemble members must 
move together. Clearly incorrect for some 
applications. 



QCEF Observation Update, Mixed Prior Distribution

A 12-member ensemble from a mixed distribution.
Duplicate members define a discrete point, 6 members at zero here.
Other members define a normal distribution; 50% of the total probability.

Multivalued CDF is also unbiased.

Mean SD
Posterior 1 -.3023 .4147
Posterior 2 .3023 .4147

Ensemble members with same prior value can 
have different posterior values. Can lead to balance 
issues.



QCEF Observation Update, Mixed Prior Distribution: Summary

Definition of the CDF is important for QCEFF applications in discrete and mixed distributions.

Standard definition leads to bias towards larger values.

Other definitions have pros and cons.

However, still much better than normal distributions for certain problems.

Anderson et al., 2024, MWR, 2111-2127. 



Closing Thoughts
Earth system DA problems are nonlinear, non-Gaussian, have mixed distributions:

Tracer concentration and sources;
Parameter estimation;
Sea ice, snow, other depths and concentrations.

DART now provides QCEFF methods:
Arbitrary distributions in observation space;
Arbitrary univariate spatial transforms before updating state variables;
Support for duplicate ensemble members.

Initial application to large models is promising:
Generally improved forecast fit to observations;
Incremental computational cost generally O(0.1)

Try it out at https://dart.ucar.edu
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Questions?



Distributions for Important Forecast Quantities

BAMS. 2009, 785-798.



Forecast Distributions for Important Quantities
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Forecast Distributions for Important Quantities

WN

Wrapped Normal (WN)



Forecast Distributions for Important Quantities

D Discrete (D)



Forecast Distributions for Important Quantities
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Mixed bounded (MB)



Forecast Distributions for Important Quantities
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MD

Mixed doubly bounded (MD)
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