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Objectives

The objectives are twofold:

1. Emulating a High-Resolution (HR) EnKF while running the forecast step with a
Low-Resolution (LR) model
⇒ reduction of the computational cost of the EnKF

2. Taking advantage of HR observations and reducing LR model bias
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Motivation and method
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Motivation and method

EnKF - Super-resolution data assimilation (SRDA)

xa
L,1..N(tk−1)

ML
(run N times)

xf
L,1..N(tk)

Super-resolution

xf
H,1..N(tk)

DA

y(tk)
xa

H,1..N(tk)

Upscaling

xa
L,1..N(tk)

EnKF-LR EnKF-HR SRDA
Observation error High4 Low4 Low4

High-resolution processes Poorly resolved4 Resolved4 Emulated4

Computational cost Low4 High, O
(
n3
)
4 Low4

Ensemble size Large4 Small4 Large4

Error to the true Pf Large4 Small4 Medium4
4



Model used

▶Model used: Quasi-geostrophic model
[Sakov & Oke, 2008]

Configuration State size Cost
HR 129×129 C
LR 65×65 C/8

▶Observations:
• True value perturbed by a Gaussian noise of
standard deviation 2

• Available every ∆t = 12
• Located along simulated satellite tracks (black
dots on the figures)

• Note the representativeness errors.

Super-resolution: downscaling operator
▶A simple cubic spline interpolation (cubic)
▶A neural network (NN)⇒ corrects the LR model
error
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Training set for the neural network

▶Run one simulation of the HR model.
▶Assemble matching pairs of LR and HR states:

(
xL,k, xH,k

)
xH,k−1

MH

xH,k

xL,k−1

ML

xL,k

U

U : Upscaling (subsampling operator)

D: Downscaling (Neural network)

▶Number of pairs: 10,000
▶ 8000 for training / 2000 for
validation
▶Architecture of the enhanced deep
super-resolution network (EDSR)
[Lim et al., 2017]
▶ Training: minimization of the mean
absolute error
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DA experiments at fixed ensemble size

▶ Synthetic experiments with 500 assimilation cycles and 25 members
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▶ SRDA-NN provides a good compromise between RMSE and computational cost.
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DA experiments at a equivalent computational cost of integration

Trade-off: 1 HR member ≈ 8 LR members (integration time)

Design of the experiments:
▶ Twin experiments with 500 assimilation cycles;
▶ Compared performance at equivalent computational cost of ≈ 5, 7, . . . , 15 HR
members→ with 40, 56, . . . , 120 LR members for the SRDA
▶ Localization and inflation tuned to optimal performance
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▶ The SRDA improves the mean RMSE for limited computational resources
▶ For larger resources, the error from the emulator is the bottleneck
▶ Can we take the best of both worlds?
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Hybrid covariance Super-Resolution Data Assimilation
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Hybrid covariance Super-Resolution Data Assimilation

The covariance matrix Pf
h in the Hybrid SRDA is a linear combination of:

▶Pf
HR computed from the HR ensemble;

▶Pf
LR computed from the LR ensemble downscaled to the HR grid:

Pf
h = (1− α)Pf

HR + αPf
LR, 0 ≤ α ≤ 1. (1)

▶α = 0 full HR case→ EnKF-HR
▶α = 1 full LR case→ EnKF-LR
▶Downscaling method “cubic spline interpolation” – MRDA

⇒ Mixed-resolution ensemble data assimilation [Rainwater & Hunt, 2013].
▶Downscaling method NN – Hybrid SRDA (NN)
▶Results computed over the HR ensemble unless otherwise stated.
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Fixed integration cost: trade-off HR/LR ensemble sizes experiments

Trade off: 1 HR member ≈ 8 LR members (integration time)

Design of the experiments: Twin experiments (500 assim. cycles) with parameters and
hybrid coefficients optimally tuned depending on the computational resources:
• EnKF-HR with NH = 10 members, SRDA-NN with NL = 80 members
• At equivalent computational cost, Hybrid SRDA-NN with
(NH,NL) = (2, 64), (3, 56), . . . , (9, 8)

• We repeat the comparison for HR resources ranging from 5 to 15 members
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Performance in forecast mode

Design of the experiments:

• Twin experiments (500 assim. cycles) with optimal parameters for 7 HR
computational resources

• At each assimilation cycle a 120 HR time steps (10 DA cycles) forecast is performed
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▶Divergence of the RMSE of the SRDA because of the low-resolution
▶ The RMSE (Fig. a) grows faster than the spread (Fig .b) because of the model error.
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Characterization of the influence of each scheme on the covariance matrix

The background error covariance matrix decomposes as:

Pf = ΣCfΣ, (2)

where:

• Σ is a diagonal matrix with standard-deviation on the diagonal.
• Cf is the background error correlation matrix.

Source: [Pannekoucke et al., 2007]

The spatial extent of the correlation functions
can estimated through the correlation length
scale Lp , [Pannekoucke et al., 2007]:

Lp =
δx√

−2 ln (ρ (δx))
(3)

where ρ is a correlation function (column of Cf)
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Variance and correlation length scale
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▶Point A: high spatio-temporal variability
▶Point B: passing of eddies
▶Point C: low spatio-temporal variability
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▶Underestimation of the correlation length scale by the MRDA at all points
▶Overestimation of the variance by the MRDA at point B
▶ The neural network allows for preserving the characteristics of the covariance matrix
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Sensitivity to the hybridization coefficient α and the ensembles’ size NH & NL
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▶ Figure a

• The RMSE is stable with respect to α.
• The spread is very sensitive to α.
• The method is tuned for the spread and RMSE of the HR ensemble to match.

▶ Figure b

• Hybrid SRDA more stable than MRDA for different (NH,NL)
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Tuning of the method
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• Figure a: The Hybrid SRDA systematically outperforms the MRDA when the ratio
NH/ (NH + NL) is between 10 and 45%.

• Figure b: “Intuitive” method for the tuning of α

▶Possible other methods:

• Optimal filtering of sample covariance [Ménétrier et al., 2015]
• Spatio-temporal varying adaptive algorithm for α [Gharamti, 2021]
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Conclusions/perspectives

Main result
▶ The Hybrid SRDA outperforms the SRDA, the EnKF and the MRDA at an equivalent
computational cost.
▶ The method is highly customizable and makes optimal use of the computational
resources available at hands.
▶ The effort to implement (Hybrid) SRDA in an existing DA system is minimal:

• No need to modify existing models
• Minor modifications to the DA code in case of Hybrid SRDA

Perspectives
▶Application of SRDA in TOPAZ system→ work Antoine Bernigaud (NERSC) supervised
by Julien Brajard & Laurent Bertino
▶Application to the Norwegian Climate Prediction Model (NorCPM) within the project
EU-Impetus4Change
▶Do not throw away your old coarse-resolution models!
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SRDA & Hybrid SRDA papers available on Ocean Dynamics!

SRDA Hybrid SRDA
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Fixed assimilation cost: fixed ensemble size & computational efficiency

▶ Twin experiments with 500 assimilation cycles
▶ Experiments at fixed ensemble size: (NH,NL) such that NH + NL = 15
▶Optimal inflation and localization
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Performance in terms of degrees of freedom of the signal

▶We seek a system that achieves the lowest error, doing minimal corrections.
▶DFS = Tr (KH) ⇒ quantify the number of degrees of freedom reduced from the
ensemble. [Cardinali et al., 2004].
▶ Example of DFS with the different method at equivalent 15 members
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▶ The Hybrid SRDA-NN yields lower DFS (assimilation updates) than the MRDA.



Setup of the neural network

Sc
al
in
g

Co
nv

Re
sB
lo
ck

Re
sB
lo
ck

Up
sa
m
pl
e

Up
sa
m
pl
e

Co
nv+

Co
nv

Re
LU

Co
nv +

ResBlock

Sh
uffl

e

Co
nv

Upsample

Architecture of the enhanced deep super-resolution network (EDSR) [?]



Training set for the neural network

▶Run one simulation of the HR model.
▶Assemble matching pairs of (U)LR and HR states:
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Training of the neural network

Minimize the mean absolute error (MAE):

L(w) =
K∑
k=1

S∑
i=1

∣∣D(xL,k)i − xH,k,i
∣∣ ,

i: the pixel index
S: size of the state (129×129)
K: size of the training set (K=8000)
w: weights of the neural network (∼ 20, 000)

Training curve



Downscaling performance

▶ Illustration with one typical sample

red lines: Contour of the true HR state



Downscaling performance (2)

▶ Score on the validation dataset



Model error correction

▶ Eddy propagation slower in the LR model
▶ The NN is smart enough to learn that
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Reformulating the SRDA as a LR scheme

▶We can reformulate the SRDA into LR EnKF equations so that we can
separate the contributions from:

1. the model error correction;
2. the super-resolution observation operator (representativeness).
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