Hybrid covariance super-resolution data assimilation

Sébastien Barthélémy^{1,2}, Julien Brajard^{2,3}, François Counillon^{1,2,3}, Laurent Bertino^{2,3} June 17, 2025

¹University of Bergen, ²Bjerknes Centre for Climate Research, ³Nansen Environmental and Remote Sensing Centre

1. Introduction

Objectives, motivation and method Model used

2. Super-resolution data assimilation – SRDA

3. Hybrid covariance Super-Resolution Data Assimilation – Hybrid SRDA

4. Conclusion and perspectives

The objectives are twofold:

- 1. Emulating a High-Resolution (HR) EnKF while running the forecast step with a Low-Resolution (LR) model
 - \Rightarrow reduction of the computational cost of the EnKF
- 2. Taking advantage of HR observations and reducing LR model bias

EnKF - Low Resolution (EnKF-LR)

EnKF - Low Resolution (EnKF-LR)

	EnKF-LR	
Observation error	High✔	
High-resolution processes	Poorly resolved🖌	
Computational cost	Low	
Ensemble size	Large🖌	
Error to the true ${\sf P}^{ m f}$	Large✔	

EnKF - Low Resolution (EnKF-LR)

EnKF - High Resolution (EnKF-HR)

	EnKF-LR	EnKF-HR	
Observation error	High✔	Low	
High-resolution processes	Poorly resolved🖌	Resolved 🖌	
Computational cost	Low	High, <i>O</i> (n³)✔	
Ensemble size	Large🖌	Small🖌	
Error to the true ${\sf P}^{ m f}$	Large🖌	Small🖌	

EnKF - Super-resolution data assimilation (SRDA) $\mathbf{x}_{\text{L},1,N}^{\text{a}}(t_k)$ $\mathbf{x}_{\mathrm{L},1..N}^{\mathrm{f}}(t_k)$ $x_{L,1..N}^{a}(t_{k-1})$ \mathcal{M}_{L} ÷ (run N times) Upscaling Super-resolution 个 $\mathbf{x}_{\mathrm{H},1..N}^{\mathrm{f}}(t_k)$ $\mathbf{x}_{\mathrm{H},1..N}^{\mathrm{a}}(t_{k})$ $y(t_k)$ ¥ DA EnKF-LR EnKF-HR SRDA Observation error High✔ Low low High-resolution processes Poorly resolved✔ Resolved Fmulated

Low/

Large✔

Large✔

Computational cost

Error to the true Pf

Ensemble size

High, $\mathcal{O}(n^3)$

Small

Small

Low

Large

Medium 🗸

▶ Model used: Quasi-geostrophic model [Sakov & Oke, 2008]

Configuration	State size	Cost
HR	129×129	С
LR	65×65	C/8

Observations:

- True value perturbed by a Gaussian noise of standard deviation 2
- \cdot Available every $\Delta t =$ 12
- Located along simulated satellite tracks (black dots on the figures)
- Note the representativeness errors.

► Model used: Quasi-geostrophic model [Sakov & Oke, 2008]

Configuration	State size	Cost
HR	129×129	С
LR	65×65	C/8

Observations:

- True value perturbed by a Gaussian noise of standard deviation 2
- · Available every $\Delta t =$ 12
- Located along simulated satellite tracks (black dots on the figures)
- Note the representativeness errors.

Super-resolution: downscaling operator

A simple cubic spline interpolation (cubic)
 A neural network (NN) ⇒ corrects the LR model error

Training set for the neural network

- ▶ Run one simulation of the HR model.
- > Assemble matching pairs of LR and HR states: $(\mathbf{x}_{\mathrm{L},k}, \mathbf{x}_{\mathrm{H},k})$

U: Upscaling (subsampling operator)

▶ Run one simulation of the HR model.

> Assemble matching pairs of LR and HR states: $(\mathbf{x}_{\mathrm{L},k}, \mathbf{x}_{\mathrm{H},k})$

 $\begin{array}{l} \mathcal{U}: \mbox{ Upscaling (subsampling operator)} \\ \mathcal{D}: \mbox{ Downscaling (Neural network)} \end{array}$

Number of pairs: 10,000

- ▶ 8000 for training / 2000 for validation
- ► Architecture of the enhanced deep super-resolution network (EDSR) [Lim *et al.*, 2017]
- ► Training: minimization of the mean absolute error

1. Introduction

2. Super-resolution data assimilation – SRDA

- 3. Hybrid covariance Super-Resolution Data Assimilation Hybrid SRDA
- 4. Conclusion and perspectives

> Synthetic experiments with 500 assimilation cycles and 25 members

▶ SRDA-NN provides a good compromise between RMSE and computational cost.

DA experiments at a equivalent computational cost of integration

Trade-off: 1 HR member \approx 8 LR members (integration time)

Design of the experiments:

- ▶ Twin experiments with 500 assimilation cycles;
- \blacktriangleright Compared performance at equivalent computational cost of \approx 5, 7, …, 15 HR
- members ightarrow with 40, 56, \ldots , 120 LR members for the SRDA
- Localization and inflation tuned to optimal performance

- > The SRDA improves the mean RMSE for limited computational resources
- ▶ For larger resources, the error from the emulator is the bottleneck
- Can we take the best of both worlds?

1. Introduction

- 2. Super-resolution data assimilation SRDA
- Hybrid covariance Super-Resolution Data Assimilation Hybrid SRDA Extension of SRDA to the multi-resolution ensemble configuration Methods intercomparison Tuning of the method
- 4. Conclusion and perspectives

Hybrid covariance Super-Resolution Data Assimilation

	EnKF-LR	EnKF-HR	SRDA	Hybrid SRDA
Observation error	High✔	Low	Low	Low
HR processes	Poorly resolved 🗸	Resolved 🖌	Emulated 🖌	Emulated (LR)✓/ resolved (HR)✔
Computational cost	Low	High, $\mathcal{O}\left(n^{3}\right) \checkmark$	Low	Customizable(🖌 – 🎸)
Ensemble size	Big✔	Small🖌	Big✔	Big✔
Error to the true P^{f}	Large🖌	Small🖌	Medium🖌	Customizable(🖌 – 🖌)

The covariance matrix $\mathbf{P}_{\mathbf{h}}^{\mathrm{f}}$ in the Hybrid SRDA is a linear combination of:

- $\blacktriangleright\ensuremath{\mathsf{P}_{\mathrm{HR}}^{\mathrm{f}}}$ computed from the HR ensemble;
- \triangleright P^f_{LR} computed from the LR ensemble **downscaled** to the HR grid:

$$\mathbf{P}_{\mathrm{h}}^{\mathrm{f}} = (1 - \alpha)\mathbf{P}_{\mathrm{HR}}^{\mathrm{f}} + \alpha \mathbf{P}_{\mathrm{LR}}^{\mathrm{f}}, \qquad 0 \le \alpha \le 1. \tag{1}$$

- $\blacktriangleright \alpha = 0$ full HR case \rightarrow EnKF-HR
- $ightarrow \alpha = 1 ext{ full LR case}
 ightarrow ext{EnKF-LR}$
- Downscaling method "cubic spline interpolation" MRDA

 \Rightarrow Mixed-resolution ensemble data assimilation [Rainwater & Hunt, 2013].

- Downscaling method NN Hybrid SRDA (NN)
- Results computed over the HR ensemble unless otherwise stated.

Fixed integration cost: trade-off HR/LR ensemble sizes experiments

Trade off: 1 HR member \approx 8 LR members (integration time)

Design of the experiments: Twin experiments (500 assim. cycles) with parameters and hybrid coefficients optimally tuned depending on the computational resources:

- + EnKF-HR with $N_{\rm H} =$ 10 members, SRDA-NN with $N_{\rm L} =$ 80 members
- At equivalent computational cost, Hybrid SRDA-NN with $(N_{\rm H}, N_{\rm L}) = (2, 64), (3, 56), \dots, (9, 8)$
- \cdot We repeat the comparison for HR resources ranging from 5 to 15 members

Performance in forecast mode

Design of the experiments:

- Twin experiments (500 assim. cycles) with optimal parameters for 7 HR computational resources
- At each assimilation cycle a 120 HR time steps (10 DA cycles) forecast is performed

▶ Divergence of the RMSE of the SRDA because of the low-resolution

▶ The RMSE (Fig. a) grows faster than the spread (Fig .b) because of the model error.

Characterization of the influence of each scheme on the covariance matrix

The background error covariance matrix decomposes as:

$$\mathsf{P}^{\mathrm{f}} = \mathsf{\Sigma}\mathsf{C}^{\mathrm{f}}\mathsf{\Sigma},\tag{2}$$

where:

- $\cdot \Sigma$ is a diagonal matrix with standard-deviation on the diagonal.
- $\cdot \,\, C^{\rm f}$ is the background error correlation matrix.

The spatial extent of the correlation functions can estimated through the **correlation length scale** *L*_{*p*}, [Pannekoucke *et al.*, 2007]:

$$L_{p} = \frac{\delta x}{\sqrt{-2\ln\left(\rho\left(\delta x\right)\right)}} \tag{3}$$

where ρ is a correlation function (column of C^{f})

Source: [Pannekoucke et al., 2007]

Variance and correlation length scale

▶ Point A: high spatio-temporal variability

- Point B: passing of eddies
- Point C: low spatio-temporal variability

- > Underestimation of the correlation length scale by the MRDA at all points
- ▶ Overestimation of the variance by the MRDA at point B
- > The neural network allows for preserving the characteristics of the covariance matrix

Sensitivity to the hybridization coefficient lpha and the ensembles' size N_H & N_L

▶ Figure a

- The RMSE is **stable** with respect to α .
- The spread is very **sensitive** to α .
- $\cdot\,$ The method is tuned for the spread and RMSE of the HR ensemble to match.

▶ Figure b

 \cdot Hybrid SRDA more stable than MRDA for different ($N_{
m H}, N_{
m L}$)

- Figure a: The Hybrid SRDA systematically outperforms the MRDA when the ratio $N_{\rm H}/(N_{\rm H}+N_{\rm L})$ is between 10 and 45%.
- + Figure b: "Intuitive" method for the tuning of α

Possible other methods:

- · Optimal filtering of sample covariance [Ménétrier et al., 2015]
- \cdot Spatio-temporal varying adaptive algorithm for lpha [Gharamti, 2021]

1. Introduction

- 2. Super-resolution data assimilation SRDA
- 3. Hybrid covariance Super-Resolution Data Assimilation Hybrid SRDA
- 4. Conclusion and perspectives

Main result

▶ The **Hybrid SRDA** outperforms the SRDA, the EnKF and the MRDA at an equivalent computational cost.

► The method is highly customizable and makes optimal use of the computational resources available at hands.

▶ The effort to implement (Hybrid) SRDA in an existing DA system is minimal:

- No need to modify existing models
- Minor modifications to the DA code in case of Hybrid SRDA

Main result

▶ The **Hybrid SRDA** outperforms the SRDA, the EnKF and the MRDA at an equivalent computational cost.

► The method is highly customizable and makes optimal use of the computational resources available at hands.

▶ The effort to implement (Hybrid) SRDA in an existing DA system is minimal:

- No need to modify existing models
- Minor modifications to the DA code in case of Hybrid SRDA

Perspectives

 \blacktriangleright Application of SRDA in TOPAZ system \rightarrow work Antoine Bernigaud (NERSC) supervised by Julien Brajard & Laurent Bertino

► Application to the Norwegian Climate Prediction Model (NorCPM) within the project EU-Impetus4Change

> Do not throw away your old coarse-resolution models!

SRDA & Hybrid SRDA papers available on Ocean Dynamics!

SRDA

Hybrid SRDA

sebastien.barthelemy@uib.no - julien.brajard@nersc.no

Acknowledgement:

Horizon Europe (#101081555) and the Trond Mohn Foundation (#BFS2018TMT01)

- ▶ Twin experiments with 500 assimilation cycles
- > Experiments at fixed ensemble size: (N_H, N_L) such that $N_H + N_L = 15$
- Optimal inflation and localization

> The method is cost effective if it is under the black dashed line;

We seek a system that achieves the lowest error, doing minimal corrections.
 DFS = Tr (KH) ⇒ quantify the number of degrees of freedom reduced from the ensemble. [Cardinali *et al.*, 2004].

> Example of DFS with the different method at equivalent 15 members

▶ The Hybrid SRDA-NN yields lower DFS (assimilation updates) than the MRDA.

Setup of the neural network

Architecture of the enhanced deep super-resolution network (EDSR) [?]

- ▶ Run one simulation of the HR model.
- > Assemble matching pairs of (U)LR and HR states: $(\mathbf{x}_{L,k}, \mathbf{x}_{H,k})$

 \mathcal{U} : Upscaling (subsampling operator)

▶ Run one simulation of the HR model.

 \blacktriangleright Assemble matching pairs of (U)LR and HR states: $(\mathbf{x}_{\mathrm{L},k},\mathbf{x}_{\mathrm{H},k})$

U: Upscaling (subsampling operator)*D*: Downscaling (Neural network)

- Number of pairs: 10,000
- ▶ 8000 for training / 2000 for validation
- ► Architecture of the enhanced deep super-resolution network (EDSR) [?]
- ► Training: minimization of the mean absolute error

Training of the neural network

Minimize the mean absolute error (MAE):

$$L(\mathbf{w}) = \sum_{k=1}^{K} \sum_{i=1}^{S} \left| \mathcal{D}(\mathbf{x}_{\mathrm{L},k})_{i} - x_{\mathrm{H},k,i} \right|,$$

- i: the pixel index
- S: size of the state (129×129)
- K: size of the training set (K=8000)
- w: weights of the neural network (\sim 20, 000)

▶ Illustration with one typical sample

Downscaling performance (2)

Score on the validation dataset

Model error correction

Model error correction

▶ Eddy propagation slower in the LR model

▶ The NN is smart enough to learn that

- ▶ We can reformulate the SRDA into LR EnKF equations so that we can separate the contributions from:
 - 1. the model error correction;
 - 2. the super-resolution observation operator (representativeness).

► Model error correction improves performance during challenging events

 Super-resolution obs. operator reduces error over the whole period

Complete SRDA-NN SRDA only with the super-res. observation operator