Learning data assimilation from artificial intelligence Are ensemble-based data assimilation methods necessary for accurate filtering?

Marc Bocquet,*

Alban Farchi,^{*,†} Tobias Finn,^{*} Charlotte Durand,^{*} Sibo Cheng,^{*} Yumeng Chen,[∥] Ivo Pasmans,[∥] Alberto Carrassi[§]

* CEREA, ENPC, EDF R&D, Institut Polytechnique de Paris, Île-de-France, France
 IDepartment of Meteorology and National Centre for Earth Observation, University of Reading, United-Kingdom
 [§] Department of Physics and Astronomy, University of Bologna, Italy
 † ECMWF, Reading, United Kingdom

Sequential data assimilation for chaotic dynamics

- 2 Learning data assimilation
- Preliminary numerical results
- Further numerical results
- Investigation and interpretation

6 Conclusion

Outline

Sequential data assimilation for chaotic dynamics

- Learning data assimilation
- Preliminary numerical results
- Further numerical results
- Investigation and interpretation

Conclusion

Sequential data assimilation for chaotic dynamics

▶ Here, data assimilation (DA) methods are formulated from

$$\mathbf{x}_{k+1} = \mathcal{M}(\mathbf{x}_k),\tag{1a}$$

$$\mathbf{y}_k = \mathcal{H}_k(\mathbf{x}_k) + \boldsymbol{\varepsilon}_k, \qquad \boldsymbol{\varepsilon}_k \sim N(\mathbf{0}, \mathbf{R}_k),$$
 (1b)

where \mathcal{M} is the *autonomous* evolution model, \mathbf{x}_k is the state vector at time τ_k , \mathbf{y}_k is the observation vector, \mathcal{H}_k is the observation operator, ε_k is the observation error, assumed to be additive, unbiased, white in time, and Gaussian of covariance matrix \mathbf{R}_k .

▶ DA for geofluids has to be *sequential* in time because (i) observations need to be assimilated *as they arrive* to update the state estimation, (ii) applied to *chaotic dynamics*, typical errors have an exponential growth.

The edge of ensemble filtering methods

► The variational methods (3D–Var, 4D–Var): can handle nonlinearity of the operators, asynchronous observations, but *cannot handle the errors of the day*.

▶ The ensemble filtering methods (EnKFs): can only handle weak nonlinearity of the operators, cannot handle asynchronous observations, *can handle the errors of the day* through the ensemble ... but requires regularisation of the error covariances estimate.

▶ Testing the EnKF ($N_e = 20$), 4D–Var, and IEnKS ($N_e = 20$) variants with the chaotic 40–variable Lorenz 96 model [Bocquet et al. 2013]:

▶ In mild nonlinear regime, the EnKF significantly outperforms the (basic) 4D–Var with moderately large DA windows because it captures the *errors of the day*.

Outline

Sequential data assimilation for chaotic dynamics

2 Learning data assimilation

Preliminary numerical results

Further numerical results

Investigation and interpretation

Conclusion

Our focus: learning the analysis

▶ Let us assume that \mathcal{M} is known, that the Jacobian of \mathcal{H}_k is \mathbf{H}_k , and that we wish to learn an *incremental analysis operator* a_{θ} , typically a neural network parametrised by θ .

▶ If $\mathbf{E}_k^{a}, \mathbf{E}_k^{f} \in \mathbb{R}^{N_x \times N_e}$ are the analysis and forecast ensemble matrices at time τ_k , a_{θ} is defined via the (ensemble) update:

$$\mathbf{E}_{k}^{\mathrm{a}} = \mathbf{E}_{k}^{\mathrm{f}} + a_{\boldsymbol{\theta}} \left(\mathbf{E}_{k}^{\mathrm{f}}, \mathbf{H}_{k}^{\mathsf{T}} \mathbf{R}_{k}^{-1} \boldsymbol{\delta}_{k} \right),$$
(2a)

where δ_k , the innovation at time τ_k , is defined by

$$\boldsymbol{\delta}_{k} \stackrel{\Delta}{=} \mathbf{y}_{k} - \mathcal{H}_{k} \left(\bar{\mathbf{x}}_{k}^{\mathrm{f}} \right), \quad \bar{\mathbf{x}}_{k}^{\mathrm{f}} \stackrel{\Delta}{=} \frac{1}{N_{\mathrm{e}}} \sum_{i=1}^{N_{\mathrm{e}}} \mathbf{x}_{k}^{\mathrm{f},i}.$$
(2b)

 \longrightarrow Notice our trick: $a_{\theta}\left(\mathbf{E}_{k}^{\mathrm{f}}, \delta_{k}\right) \longrightarrow a_{\theta}\left(\mathbf{E}_{k}^{\mathrm{f}}, \mathbf{H}_{k}^{\mathsf{T}}\mathbf{R}_{k}^{-1}\delta_{k}\right)$, i.e., uplift of observational information in state space.

▶ The DA forecast step propagates the analysis ensemble, member-wise:

$$\mathbf{E}_{k+1}^{\mathrm{f}} = \mathcal{M}\left(\mathbf{E}_{k}^{\mathrm{a}}\right). \tag{3}$$

▶ The a_{θ} -based sequential DA will be called DAN in the following.

Neural network architecture

 \blacktriangleright We choose a_{θ} to have a simple residual convolutional neural network (CNN) architecture.

Architecture of the residual convolutional network, where $N_{\rm b} = 2$, $N_{\rm sb} = 3$. $\operatorname{conv}_{N_1,N_2,f}$ is a generic one-dimensional convolutional layer of dimension N_1 , with N_2 filters of kernel size f.

Training scheme -1/2

- ▶ Literature (focused on *sequential data assimilation*):
 - Learning the analysis of sequential DA is not new [Härter et al. 2012; Cintra et al. 2018], though barely explored.
 - Learning key components of the analysis in the (En)KF [H. Hoang et al. 1994; S. Hoang et al. 1998] possibly leveraging auto-differentiable structure [Haarnoja et al. 2016; Chen et al. 2022; Luk et al. 2024] Was also investigated.
 - ▶ Only two key papers so far focused on a *non-parametrised* analysis using backpropagation *through the DA cycles*: [McCabe et al. 2021; Boudier et al. 2023].
- ▶ Our training loss (supervised learning):¹

We consider N_r , N_c cycle-long ensemble DA runs, based on N_r independent concurrent trajectories of the dynamics $\mathbf{x}_k^{t,r}$ and as many sequences of observation vectors \mathbf{y}_k^r . The analysis ensemble is $\mathbf{x}_k^{\mathbf{a},i,r} \in \mathbb{R}^{N_{\mathbf{x}} \times N_{\mathbf{e}}}$. The loss function is defined by

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{r=1}^{N_{\rm r}} \sum_{k=1}^{N_{\rm c}} \left\| \mathbf{x}_k^{{\rm t},r} - \bar{\mathbf{x}}_k^{{\rm a},r}(\boldsymbol{\theta}) \right\|^2, \quad \bar{\mathbf{x}}_k^{{\rm a},r} \stackrel{\Delta}{=} \frac{1}{N_{\rm e}} \sum_{i=1}^{N_{\rm e}} \mathbf{x}_k^{{\rm a},i,r}.$$
(4)

¹[Bocquet et al. 2024]

Training scheme -2/2

Structure of the dataset organised as a function of time, trajectory sample, batches and epochs.

► Like [McCabe et al. 2021; Boudier et al. 2023], We use truncated backpropagation through time TBPTT [Tang et al. 2018; Aicher et al. 2020].

▶ For numerical efficiency, we choose to generate the samples *online*, as the training progresses, i.e. an *infinite training dataset*!

Outline

Sequential data assimilation for chaotic dynamics

Learning data assimilation

Preliminary numerical results

- Further numerical results
- Investigation and interpretation

Conclusion

Hyperparameter sensitivity analysis

Sensitivity analysis on key hyperparameters such as the number of trajectories N_r in the dataset, and the architecture parameters (N_f , N_b , N_{sb}) using the standard Lorenz 96 DA configuration ($\mathcal{H} = \mathbf{I}_x$, $\mathbf{R} = \mathbf{I}_x$).

► The learned DA scheme *yields* EnKF-like accuracy!

► Compromise between a_{θ} 's size and its accuracy: $N_{\rm r} = 2^{18}$, $N_{\rm f} = 40$, $N_{\rm b} = 5$, $N_{\rm sb} = 5$.

Sensitivity to the ensemble size

First key observation: The performance of a_{θ} barely depends on the ensemble size N_{e} . Hence localisation is irrelevant and unnecessary.

Second key observation: a_{θ} does not require inflation and is incredibly robust to noise (as we shall see it applies its own inflation).

Explanation from the optimisation standpoint: *feature collapse* of a_{θ} with respect to N_{e} in the training. Potential better solution when $N_{e} > 1$, but a_{θ} with $N_{e} = 1$ is as accurate as the EnKF!

Sensitivity to observation error magnitude

▶ Next, we carry out a series of experiments that are not central to our message here but further ground the *viability of such learned* a_{θ} (assuming here $\mathbf{R}_{k} \stackrel{\Delta}{=} \mathbf{I}_{x}$).

▶ Impact of the *observation noise magnitude* on the data assimilation tests:

Sensitivity to observation sparsity

Impact of the sparsity of the observation dataset on the data assimilation tests:

 $\triangleright a_{\theta}$ trained with time-dependent, random, observation numbers and positions.

Outline

- Sequential data assimilation for chaotic dynamics
- 2 Learning data assimilation
- Preliminary numerical results
- 4 Further numerical results
- Investigation and interpretation
- 6 Conclusion

Sensitivity to the training depth $N_{ m c}$

 \blacktriangleright Training through $N_{\rm c} = 1$ cycles cannot learn about the direct impact of the dynamics on DA.

> Training through N_c chained cycles is expected to be crucial to the accuracy and robustness of the learned a_{θ} .

▶ Training depth does matter! As expected, $N_c \ge 2$ cycles are required to see significant benefits.

Semi-supervised learning

- What if we do not have access to the truth \mathbf{x}_k^t but to the observations only \mathbf{y}_k ?
- Assume (i) \mathcal{H}_k is linear, (ii) $\mathbf{y}_k \perp \mathbf{y}_{k+1}$, and the estimator $\mathbf{z}_{k+1}^{\boldsymbol{\theta}}$ only depends on $(\mathbf{x}_k, \mathbf{y}_k)$.
- We define the semi-supervised loss function as

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{k=1}^{N_{c}} \left\| \mathbf{y}_{k} - \mathbf{H}_{k} \mathbf{z}_{k}^{\boldsymbol{\theta}} \right\|^{2} = \sum_{k=1}^{N_{c}} \mathcal{L}_{k}(\boldsymbol{\theta}).$$
(5)

But we have from the above assumptions:

$$\mathbb{E}_{\mathbf{y}} \left[\mathcal{L}_{k}(\boldsymbol{\theta}) \right] = \mathbb{E}_{\mathbf{y}} \left[\left\| \mathbf{y}_{k} - \mathbf{H}_{k} \mathbf{x}_{k}^{t} \right\|^{2} \right] + \mathbb{E}_{\mathbf{y}} \left[\left\| \mathbf{H}_{k} \left(\mathbf{x}_{k}^{t} - \mathbf{z}_{k}^{\boldsymbol{\theta}} \right) \right\|^{2} \right]$$
(6a)
$$= \operatorname{Cst} + \mathbb{E}_{\mathbf{y}} \left[\left\| \mathbf{H}_{k} \left(\mathbf{x}_{k}^{t} - \mathbf{z}_{k}^{\boldsymbol{\theta}} \right) \right\|^{2} \right]$$
(6b)

► Hence, generalising [McCabe et al. 2021] to non-trivial \mathbf{H}_k , we can learn \mathbf{z}_k^{θ} from the observation only, with further assumptions on $\{\mathbf{H}_k\}_{k=1,...,K}$. For instance, we can choose \mathbf{z}_k^{θ} such that:

$$\mathcal{L}_{k}(\boldsymbol{\theta}) = \left\| \mathbf{y}_{k+1} - \mathbf{H}_{k+1} \mathcal{M} \left\{ \mathbf{x}_{k}^{\mathrm{f}} + a_{\boldsymbol{\theta}} \left(\mathbf{x}_{k}^{\mathrm{f}}, \mathbf{H}_{k}^{\mathsf{T}} \mathbf{R}_{k}^{-1} \left(\mathbf{y}_{k} - \mathbf{H}_{k} \mathbf{x}_{k}^{\mathrm{f}} \right) \right) \right\} \right\|^{2}.$$
 (7)

Outline

- Sequential data assimilation for chaotic dynamics
- 2 Learning data assimilation
- Preliminary numerical results
- 4 Further numerical results
- Investigation and interpretation

Conclusion

Consequences and further checks

 \blacktriangleright Hence, from now on, we will focus on the mode: $\boxed{N_{\rm e}=1}$.

Recall

$$\mathbf{E}_{k}^{\mathrm{a}} = \mathbf{E}_{k}^{\mathrm{f}} + a_{\boldsymbol{\theta}} \left(\mathbf{E}_{k}^{\mathrm{f}}, \mathbf{H}_{k}^{\mathsf{T}} \mathbf{R}_{k}^{-1} \boldsymbol{\delta}_{k} \right).$$
(8)

▶ Performance of a_{θ} compared to baselines such as optimally tuned 3D-Var, the learned optimal linear filter, optimally tuned EnKF:

DA method	well-tuned classical	DL-based	aRMSE
EnKF-N, $N_{\rm e} = 20$	yes		0.191
EnKF-N, $N_{\rm e} = 40$	yes		0.179
3D-Var	yes		0.40
$a_{\theta}, N_{\rm e} = 1, N_{\rm f} = 40$		yes	0.191
$a_{\theta}, N_{\rm e} = 1, N_{\rm f} = 100$		yes	0.185
linear $a_{m{ heta}}$, $N_{ m e}=1$, $N_{ m f}=40$		yes	0.384
simplified \hat{a}_{θ} , $N_{\rm e} = 1$, $N_{\rm f} = 40$		yes	0.382

where the simplified Ansatz \hat{a}_{θ} is defined through

$$\mathbf{E}_{k}^{\mathrm{a}} = \mathbf{E}_{k}^{\mathrm{f}} + \hat{a}_{\boldsymbol{\theta}} \left(\mathbf{H}_{k}^{\mathsf{T}} \mathbf{R}_{k}^{-1} \boldsymbol{\delta}_{k} \right).$$
(9)

Operator expansion of the analysis

▶ We look for a classical Kalman update that would be a good match to a_{θ} seen as a mathematical map, at least for small analysis increments.

▶ To that end, we define the time-dependent normalised scalar anomalies

$$b_k = \frac{1}{\sqrt{N_{\mathbf{x}}}} \left\| a_{\boldsymbol{\theta}}(\mathbf{x}_k, \mathbf{0}) \right\|, \tag{10}$$

along with the associated mean bias b and the standard deviation s of b_k in time.

▶ Next, expanding with respect to the innovation, the following functional form for a_{θ} is assumed:

$$a_{\theta}(\mathbf{x}, \mathbf{H}^{\mathsf{T}} \mathbf{R}^{-1} \boldsymbol{\delta}) \approx \mathbf{K}(\mathbf{x}) \cdot \boldsymbol{\delta}, \tag{11}$$

owing to the fact that no state update is needed when the innovation vanishes, and only keeping the leading order term in δ .

Identifying the operators in the expansion

▶ Innovations $\{\delta_j\}_{j=1,...,N_p}$ are sampled from $\delta_j \sim N(\mathbf{0}, \mathbf{R})$. This yields a set of corresponding incremental updates $\{\mathbf{a}_j = a_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}\delta_j)\}_{j=1,...,N_p}$. $\mathbf{K}(\mathbf{x})$ is then estimated with the least squares problem

$$\mathcal{L}_{\mathbf{x}}(\mathbf{K}) = \sum_{j=1}^{N_{\mathrm{p}}} \left\| \mathbf{a}_{j} - \bar{\mathbf{a}} - \mathbf{K}(\mathbf{x}) \cdot \left(\boldsymbol{\delta}_{j} - \bar{\boldsymbol{\delta}} \right) \right\|^{2},$$
(12)

where $\bar{\mathbf{a}} = N_{\mathrm{p}}^{-1} \sum_{j=1}^{N_{\mathrm{p}}} \mathbf{a}_j$ and $\bar{\boldsymbol{\delta}} = N_{\mathrm{p}}^{-1} \sum_{j=1}^{N_{\mathrm{p}}} \boldsymbol{\delta}_j$.

▶ Within the *best linear unbiased estimator* framework, **K** is related to \mathbf{P}^{a} through $\mathbf{K} = \mathbf{P}^{a}\mathbf{H}^{\mathsf{T}}\mathbf{R}^{-1}$ so that from Eq. (11),

$$a_{\theta}(\mathbf{x}, \mathbf{H}^{\mathsf{T}} \mathbf{R}^{-1} \boldsymbol{\delta}) \approx \mathbf{P}^{\mathrm{a}} \mathbf{H}^{\mathsf{T}} \mathbf{R}^{-1} \boldsymbol{\delta}, \tag{13}$$

which suggests that an expansion in the second variable $\pmb{\zeta} \in \mathbb{R}^{N_{\mathbf{X}}}$ of $a_{\pmb{ heta}}$ yields

$$a_{\theta}(\mathbf{x}, \zeta) \approx \mathbf{P}^{\mathrm{a}}(\mathbf{x}) \cdot \zeta.$$
 (14)

Hence, we can obtain a numerical estimation of an equivalent $\mathbf{P}^{a}(\mathbf{x})$.

What is learned? Supporting numerical results

▶ We obtain $b \simeq 5 \times 10^{-3}$ and $s \simeq 10^{-3}$, which are indeed very small compared to the typical aRMSE of an either DAN or EnKF run, i.e., 0.20.

▶ The surrogate \mathbf{P}^{a} , denoted \mathbf{P}^{a}_{DAN} and estimated from Eq. (14), is compared to that of a concurrent well-tuned EnKF with $N_{e} = 40$, whose analysis error covariance matrix is \mathbf{P}^{a}_{EnKF} .

 \longrightarrow The time-averaged Bures–Wasserstein distance distance between $\mathbf{P}^a_{\mathrm{DAN}}$ and $\mathbf{P}^a_{\mathrm{EnKF}}$ is 0.013 whereas it is 0.048 between $\mathbf{P}^a_{\mathrm{DAN}}$ and $(0.40)^2\mathbf{I}_x$, which approximates \mathbf{P}^a of a well-tuned 3D-Var.

What is learned? Supporting numerical results

 \blacktriangleright The time-averaged eigenspectra of \mathbf{P}^a_{DAN} and $\mathbf{P}^a_{EnKF}:$

They are remarkably close to each other for the first 10 modes. Beyond these modes the a_{θ} operator is likely to selectively apply *some multiplicative inflation*, as one would expect from such stable DA runs.

► Conclusion 1: a_{θ} depends on the innovation but also directly on \mathbf{x}_{k}^{f} when $N_{e} = 1$, as opposed to the incremental update of the EnKF: a_{θ} extracts important information from \mathbf{x}_{k}^{f} .

▶ Conclusion 2: a_{θ} manages to assess \mathbf{P}_{DAN}^{a} with $N_{e} = 1$ which is very close to \mathbf{P}_{EnKF}^{a} with $N_{e} = 40$, for the dominant axes, and applies multiplicative inflation on the less unstable modes.² We conclude that a_{θ} directly learns about the dynamics features. Hence, for a_{θ} , critical pieces of information on \mathbf{P}_{k}^{a} are encoded, and thus exploitable, in \mathbf{x}_{k}^{f} alone.

Explanation, conclusion 3: Furthermore, if the DA run (the forecast and analysis cycle) is considered as an ergodic dynamical system of its own,³ the *multiplicative ergodic theorem* guarantees the existence of a mapping between \mathbf{x}_{k}^{f} and \mathbf{P}_{k}^{a} that a_{θ} is able to guess. We believe that a generalised variant of the multiplicative ergodic theorem for non-autonomous random dynamics should be applicable.⁴

²[Bocquet et al. 2015]

³[Carrassi et al. 2008]

⁴[Arnold 1998; Flandoli et al. 2021]

Locality and scalability

▶ a_{θ} is now trained without changing the architecture and the hyperparameters ($N_{\rm f} = 40$), but with a changing state space dimension $N_{\rm x} \in [20, 160]$. Almost as good as well tuned EnKFs with changing dimension $N_{\rm x}$ and $N_{\rm e} = N_{\rm x}$!

 \longrightarrow We conjecture that a_{θ} extracts *local* pieces of information from $\mathbf{x}_{k}^{\mathrm{f}}$.

▶ a_{θ} , learned from Lorenz 96 with $N_x = 40$ is now tested on Lorenz 96 models with N_x ranging from 20 to 160 (same weights and biases!). The performance is still on par with retraining! We called this a *transdimensional transfer*.

Locality and scalability

▶ These local patterns (for a_{θ} , not \mathcal{M}) can be pictured from the mean marginal analysis error covariance matrix:

$$\mathbf{S} = \left\langle \mathbf{C} : \left[\nabla_{\mathbf{x}} \nabla_{\zeta} a_{\boldsymbol{\theta}}(\mathbf{x}, \zeta)_{|\zeta = \mathbf{0}} \right] \right\rangle_{\mathbf{x} \in \mathcal{T}} = \left\langle \mathbf{C} : \left[\nabla_{\mathbf{x}} \mathbf{P}^{\mathrm{a}}(\mathbf{x}) \right] \right\rangle_{\mathbf{x} \in \mathcal{T}},$$
(15)

where \mathcal{T} is a long L96 trajectory, and \mathbf{C} is a tensor that leverages translational invariance of the L96 model: $[\mathbf{C}]_{ij}^{nmk} = \frac{1}{N_x} \delta_{n,i+k} \delta_{m,j+k}$.

Application to the Kuramoto-Sivashinski model

► The results are very similar to those of the Lorenz 96 model. Mean marginal analysis error covariance matrix:

- Sequential data assimilation for chaotic dynamics
- 2 Learning data assimilation
- Preliminary numerical results
- Further numerical results
- Investigation and interpretation

6 Conclusion

▶ We have carried similar numerical experiments with a *single-layer QG model on the sphere*, with similar conclusions.

▶ Will such *multiplicative ergodic theorem* still be valid in more anisotropic, non-autonomous, forced, multivariate, heterogeneously observed systems?

▶ In any case, this promotes a rethinking of the popular sequential DA schemes for chaotic dynamics.

 \longrightarrow Talk (mainly) based on Bocquet et al., Chaos, 2024.

References

References I

- C. Aicher, N. J. Foti, and E. B. Fox. "Adaptively Truncating Backpropagation Through Time to Control Gradient Bias". In: Proceedings of The 35th Uncertainty in Artificial Intelligence Conference. Ed. by Ryan P. Adams and Vibhav Gogate. Vol. 115. Proceedings of Machine Learning Research. PMLR, 22–25 Jul 2020, pp. 799–808.
- [2] L. Arnold. Random Dynamical Systems. Springer Berlin, Heidelberg, 1998, p. 586.
- M. Bocquet, P. N. Raanes, and A. Hannart. "Expanding the validity of the ensemble Kalman filter without the intrinsic need for inflation". In: Nonlin. Processes Geophys. 22 (2015), pp. 645–662.
- M. Bocquet and P. Sakov. "Joint state and parameter estimation with an iterative ensemble Kalman smoother". In: Nonlin. Processes Geophys. 20 (2013), pp. 803–818.
- [5] M. Bocquet et al. "Accurate deep learning-based filtering for chaotic dynamics by identifying instabilities without an ensemble". In: Chaos 29 (2024), p. 091104.
- [6] P. Boudier et al. "Data Assimilation Networks". In: J. Adv. Model. Earth Syst. 15 (2023), e2022MS003353.
- [7] A. Carrassi et al. "Data assimilation as a nonlinear dynamical systems problem: Stability and convergence of the prediction-assimilation system". In: Chaos 18 (2008), p. 023112.
- [8] Y. Chen, D. Sanz-Alonso, and R. Willett. "Autodifferentiable Ensemble Kalman Filters". In: SIAM J. Math. Data Sci. 4 (2022), pp. 801-833.
- [9] R. S. Cintra and H. F. de Campos Velho. "Data assimilation by artificial neural networks for an atmospheric general circulation model". In: Advanced applications for artificial neural networks. Ed. by A. ElShahat. IntechOpen, 2018. Chap. 17, pp. 265–286.
- [10] F. Flandoli and E. Tonello. An introduction to random dynamical systems for climate. 2021.
- [11] T. Haarnoja et al. "Backprop KF: Learning Discriminative Deterministic State Estimators". In: Advances in Neural Information Processing Systems. Ed. by D. Lee et al. Vol. 29. Curran Associates, Inc., 2016.
- [12] T. P. Härter and H. F. de Campos Velho. "Data Assimilation Procedure by Recurrent Neural Network". In: Eng. Appl. Comput. Fluid Mech. 6 (2012), pp. 224–233.
- [13] H.S. Hoang, P. De Mey, and O. Talagrand. "A simple adaptive algorithm of stochastic approximation type for system parameter and state estimation". In: Proceedings of 1994 33rd IEEE Conference on Decision and Control. Vol. 1. 1994, 747–752 vol.1.
- [14] S. Hoang et al. "Adaptive filtering: application to satellite data assimilation in oceanography". In: Dynam. Atmos. Ocean 27 (1998), pp. 257-281.
- [15] E. Luk et al. Learning Optimal Filters Using Variational Inference. 2024. arXiv: 2406.18066 [cs.LG].

- [16] M. McCabe and J. Brown. "Learning to Assimilate in Chaotic Dynamical Systems". In: Advances in Neural Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc., 2021, pp. 12237–12250.
- [17] H. Tang and J. Glass. "On Training Recurrent Networks with Truncated Backpropagation Through time in Speech Recognition". In: 2018 IEEE Spoken Language Technology Workshop (SLT). 2018, pp. 48–55.