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Sequential data assimilation for chaotic dynamics

Sequential data assimilation for chaotic dynamics

▶Here, data assimilation (DA) methods are formulated from

xk+1 = M(xk), (1a)
yk = Hk(xk) + εk, εk ∼ N(0, Rk), (1b)

where M is the autonomous evolution model, xk is the state vector at time τk, yk is the
observation vector, Hk is the observation operator, εk is the observation error, assumed to be
additive, unbiased, white in time, and Gaussian of covariance matrix Rk.

▶DA for geofluids has to be sequential in time because (i) observations need to be assimilated as
they arrive to update the state estimation, (ii) applied to chaotic dynamics, typical errors have an
exponential growth.
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Sequential data assimilation for chaotic dynamics

The edge of ensemble filtering methods

▶The variational methods (3D–Var, 4D–Var): can handle nonlinearity of the operators,
asynchronous observations, but cannot handle the errors of the day.

▶The ensemble filtering methods (EnKFs): can only handle weak nonlinearity of the operators,
cannot handle asynchronous observations, can handle the errors of the day through the ensemble
. . . but requires regularisation of the error covariances estimate.

▶Testing the EnKF (Ne = 20), 4D–Var, and IEnKS (Ne = 20) variants with the chaotic
40–variable Lorenz 96 model [Bocquet et al. 2013]:
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▶ In mild nonlinear regime, the EnKF significantly outperforms the (basic) 4D–Var with
moderately large DA windows because it captures the errors of the day .
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Learning data assimilation

Our focus: learning the analysis

▶ Let us assume that M is known, that the Jacobian of Hk is Hk, and that we wish to learn an
incremental analysis operator aθ , typically a neural network parametrised by θ.

▶ If Ea
k, Ef

k ∈ RNx×Ne are the analysis and forecast ensemble matrices at time τk, aθ is defined
via the (ensemble) update:

Ea
k = Ef

k + aθ

(
Ef

k, H⊺
kR−1

k
δk

)
, (2a)

where δk, the innovation at time τk, is defined by

δk
∆= yk − Hk

(
x̄f

k

)
, x̄f

k

∆=
1

Ne

Ne∑
i=1

xf,i
k

. (2b)

−→ Notice our trick: aθ

(
Ef

k, δk

)
−→ aθ

(
Ef

k, H⊺
kR−1

k
δk

)
, i.e., uplift of observational

information in state space.

▶The DA forecast step propagates the analysis ensemble, member-wise:

Ef
k+1 = M

(
Ea

k

)
. (3)

▶The aθ–based sequential DA will be called DAN in the following.
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Learning data assimilation

Neural network architecture

▶We choose aθ to have a simple residual convolutional neural network (CNN) architecture.
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Architecture of the residual convolutional network, where Nb = 2, Nsb = 3. convN1,N2,f is a
generic one-dimensional convolutional layer of dimension N1, with N2 filters of kernel size f .
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Learning data assimilation

Training scheme – 1/2

▶ Literature (focused on sequential data assimilation):
▶ Learning the analysis of sequential DA is not new [Härter et al. 2012; Cintra et al. 2018], though barely

explored.
▶ Learning key components of the analysis in the (En)KF [H. Hoang et al. 1994; S. Hoang et al. 1998] possibly

leveraging auto-differentiable structure [Haarnoja et al. 2016; Chen et al. 2022; Luk et al. 2024] was also
investigated.

▶ Only two key papers so far focused on a non-parametrised analysis using backpropagation
through the DA cycles: [McCabe et al. 2021; Boudier et al. 2023].

▶Our training loss (supervised learning):1

We consider Nr, Nc cycle-long ensemble DA runs, based on Nr independent concurrent
trajectories of the dynamics xt,r

k
and as many sequences of observation vectors yr

k.
The analysis ensemble is xa,i,r

k
∈ RNx×Ne . The loss function is defined by

L(θ) =
Nr∑

r=1

Nc∑
k=1

∥∥xt,r
k

− x̄a,r
k

(θ)
∥∥2

, x̄a,r
k

∆=
1

Ne

Ne∑
i=1

xa,i,r
k

. (4)

1[Bocquet et al. 2024]
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Learning data assimilation

Training scheme – 2/2
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Structure of the dataset organised as a function of time, trajectory sample, batches and epochs.

▶ Like [McCabe et al. 2021; Boudier et al. 2023], we use truncated backpropagation through time TBPTT [Tang

et al. 2018; Aicher et al. 2020].

▶For numerical efficiency, we choose to generate the samples online, as the training progresses,
i.e. an infinite training dataset!
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Preliminary numerical results

Hyperparameter sensitivity analysis

▶ Sensitivity analysis on key hyperparameters such as the number of trajectories Nr in the
dataset, and the architecture parameters (Nf , Nb, Nsb) using the standard Lorenz 96 DA
configuration (H = Ix, R = Ix).
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▶The learned DA scheme yields EnKF-like accuracy!

▶Compromise between aθ ’s size and its accuracy: Nr = 218, Nf = 40, Nb = 5, Nsb = 5.
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Preliminary numerical results

Sensitivity to the ensemble size

▶First key observation: The performance of aθ barely depends on the ensemble size Ne. Hence
localisation is irrelevant and unnecessary.
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▶ Second key observation: aθ does not require inflation and is incredibly robust to noise (as we
shall see it applies its own inflation).

▶Explanation from the optimisation standpoint: feature collapse of aθ with respect to Ne in the
training. Potential better solution when Ne > 1, but aθ with Ne = 1 is as accurate as the EnKF!
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Preliminary numerical results

Sensitivity to observation error magnitude

▶Next, we carry out a series of experiments that are not central to our message here but further
ground the viability of such learned aθ (assuming here Rk

∆= Ix).

▶ Impact of the observation noise magnitude on the data assimilation tests:
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Preliminary numerical results

Sensitivity to observation sparsity

▶ Impact of the sparsity of the observation dataset on the data assimilation tests:
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▶ aθ trained with time-dependent, random, observation numbers and positions.

M. Bocquet The 20th international EnKF workshop 2025, Ullensvang, Norway, 17 June 2025 15 / 30



Further numerical results
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Further numerical results

Sensitivity to the training depth Nc

▶Training through Nc = 1 cycles cannot learn about the direct impact of the dynamics on DA.

▶Training through Nc chained cycles is expected to be crucial to the accuracy and robustness of
the learned aθ .

1 2 3 4 5 6 8 10 12 16 20 24 32 40 48

Nc

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

A
ve

ra
ge

an
al

ys
is

R
M

S
E

▶Training depth does matter!
As expected, Nc ≥ 2 cycles are required to see significant benefits.
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Further numerical results

Semi-supervised learning

▶What if we do not have access to the truth xt
k but to the observations only yk?

▶Assume (i) Hk is linear, (ii) yk ⊥ yk+1, and the estimator zθ
k+1 only depends on (xk, yk).

▶We define the semi-supervised loss function as

L(θ) =
Nc∑

k=1

∥∥yk − Hkzθ
k

∥∥2
=

Nc∑
k=1

Lk(θ). (5)

But we have from the above assumptions:

Ey [Lk(θ)] = Ey

[∥∥yk − Hkxt
k

∥∥2
]

+ Ey

[∥∥Hk

(
xt

k − zθ
k

)∥∥2
]

(6a)

= Cst + Ey

[∥∥Hk

(
xt

k − zθ
k

)∥∥2
]

(6b)

▶Hence, generalising [McCabe et al. 2021] to non-trivial Hk, we can learn zθ
k from the observation only,

with further assumptions on {Hk}k=1,...,K . For instance, we can choose zθ
k such that:

Lk(θ) =
∥∥yk+1 − Hk+1M

{
xf

k + aθ

(
xf

k, H⊺
kR−1

k

(
yk − Hkxf

k

))}∥∥2
. (7)
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Investigation and interpretation
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Investigation and interpretation

Consequences and further checks

▶Hence, from now on, we will focus on the mode: Ne = 1 .

▶Recall
Ea

k = Ef
k + aθ

(
Ef

k, H⊺
kR−1

k
δk

)
. (8)

▶Performance of aθ compared to baselines such as optimally tuned 3D-Var, the learned optimal
linear filter, optimally tuned EnKF:

DA method well-tuned classical DL-based aRMSE
EnKF-N, Ne = 20 yes 0.191
EnKF-N, Ne = 40 yes 0.179
3D-Var yes 0.40
aθ , Ne = 1, Nf = 40 yes 0.191
aθ , Ne = 1, Nf = 100 yes 0.185
linear aθ , Ne = 1, Nf = 40 yes 0.384
simplified âθ , Ne = 1, Nf = 40 yes 0.382

where the simplified Ansatz âθ is defined through

Ea
k = Ef

k + âθ

(
H⊺

kR−1
k

δk

)
. (9)

M. Bocquet The 20th international EnKF workshop 2025, Ullensvang, Norway, 17 June 2025 20 / 30



Investigation and interpretation

Operator expansion of the analysis

▶We look for a classical Kalman update that would be a good match to aθ seen as a
mathematical map, at least for small analysis increments.

▶To that end, we define the time-dependent normalised scalar anomalies

bk =
1

√
Nx

∥aθ(xk, 0)∥ , (10)

along with the associated mean bias b and the standard deviation s of bk in time.

▶Next, expanding with respect to the innovation, the following functional form for aθ is assumed:

aθ(x, H⊺R−1δ) ≈ K(x) · δ, (11)

owing to the fact that no state update is needed when the innovation vanishes, and only keeping
the leading order term in δ.
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Investigation and interpretation

Identifying the operators in the expansion

▶ Innovations {δj}j=1,...,Np
are sampled from δj ∼ N(0, R).

This yields a set of corresponding incremental updates
{

aj = aθ(x, H⊺R−1δj)
}

j=1,...,Np
.

K(x) is then estimated with the least squares problem

Lx(K) =
Np∑
j=1

∥∥aj − ā − K(x) ·
(

δj − δ̄
)∥∥2

, (12)

where ā = N−1
p

∑Np
j=1 aj and δ̄ = N−1

p
∑Np

j=1 δj .

▶Within the best linear unbiased estimator framework, K is related to Pa through
K = PaH⊺R−1 so that from Eq. (11),

aθ(x, H⊺R−1δ) ≈ PaH⊺R−1δ, (13)

which suggests that an expansion in the second variable ζ ∈ RNx of aθ yields

aθ(x, ζ) ≈ Pa(x) · ζ. (14)

Hence, we can obtain a numerical estimation of an equivalent Pa(x).
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Investigation and interpretation

What is learned? Supporting numerical results

▶We obtain b ≃ 5 × 10−3 and s ≃ 10−3, which are indeed very small compared to the typical
aRMSE of an either DAN or EnKF run, i.e., 0.20.

▶The surrogate Pa, denoted Pa
DAN and estimated from Eq. (14), is compared to that of a

concurrent well-tuned EnKF with Ne = 40, whose analysis error covariance matrix is Pa
EnKF.

−→ The time-averaged Bures–Wasserstein distance distance between Pa
DAN and Pa

EnKF is 0.013
whereas it is 0.048 between Pa

DAN and (0.40)2Ix, which approximates Pa of a well-tuned 3D-Var.
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Investigation and interpretation

What is learned? Supporting numerical results

▶The time-averaged eigenspectra of Pa
DAN and Pa

EnKF:
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▶They are remarkably close to each other for the first 10 modes. Beyond these modes the aθ

operator is likely to selectively apply some multiplicative inflation, as one would expect from such
stable DA runs.
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Investigation and interpretation

Main interpretation

▶Conclusion 1: aθ depends on the innovation but also directly on xf
k when Ne = 1, as opposed

to the incremental update of the EnKF: aθ extracts important information from xf
k.

▶Conclusion 2: aθ manages to assess Pa
DAN with Ne = 1 which is very close to Pa

EnKF with
Ne = 40, for the dominant axes, and applies multiplicative inflation on the less unstable modes.2
We conclude that aθ directly learns about the dynamics features. Hence, for aθ , critical pieces of
information on Pa

k are encoded, and thus exploitable, in xf
k alone.

▶Explanation, conclusion 3: Furthermore, if the DA run (the forecast and analysis cycle) is
considered as an ergodic dynamical system of its own,3 the multiplicative ergodic theorem
guarantees the existence of a mapping between xf

k and Pa
k that aθ is able to guess.

We believe that a generalised variant of the multiplicative ergodic theorem for non-autonomous
random dynamics should be applicable.4

2[Bocquet et al. 2015]
3[Carrassi et al. 2008]
4[Arnold 1998; Flandoli et al. 2021]
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Investigation and interpretation

Locality and scalability

▶ aθ is now trained without changing the architecture and the hyperparameters (Nf = 40), but
with a changing state space dimension Nx ∈ [20, 160]. Almost as good as well tuned EnKFs with
changing dimension Nx and Ne = Nx!
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−→ We conjecture that aθ extracts local pieces of information from xf
k.

▶ aθ , learned from Lorenz 96 with Nx = 40 is now tested on Lorenz 96 models with Nx ranging
from 20 to 160 (same weights and biases!). The performance is still on par with retraining!
We called this a transdimensional transfer .
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Investigation and interpretation

Locality and scalability

▶These local patterns (for aθ , not M) can be pictured from the mean marginal analysis error
covariance matrix :

S =
〈

C :
[
∇x∇ζaθ(x, ζ)|ζ=0

]〉
x∈T

=
〈

C : [∇xPa(x)]
〉

x∈T
, (15)

where T is a long L96 trajectory, and C is a tensor that leverages translational invariance of the
L96 model: [C]nmk

ij = 1
Nx

δn,i+kδm,j+k.
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Investigation and interpretation

Application to the Kuramoto-Sivashinski model

▶The results are very similar to those of the Lorenz 96 model.
Mean marginal analysis error covariance matrix:
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Conclusion

Conclusion: addendum and perspectives

▶We have carried similar numerical experiments with a single-layer QG model on the sphere,
with similar conclusions.

▶Will such multiplicative ergodic theorem still be valid in more anisotropic, non-autonomous,
forced, multivariate, heterogeneously observed systems?

▶ In any case, this promotes a rethinking of the popular sequential DA schemes for chaotic
dynamics.

−→ Talk (mainly) based on Bocquet et al., Chaos, 2024.
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