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Introduction

Motivation: Enhance the estimation accuracy of sample covariance matrices to reduce the effect

of spurious correlations in ensemble-based history matching, especially when the true covariance

structures are unknown.

Proposal: This work introduces a novel approach, called covariance scaling, to mitigate sampling

errors in sample covariance matrices. This approach aims to find the optimal regularization param-

eter that minimizes the difference between a true covariance and its sample estimate. In contrast

to other similar methods in the literature, such as the covariance shrinkage method, covariance

scaling can be applied to improve the estimate of a covariance-like matrix in an arbitrary shape,

including the cross-covariance matrix in the calculation of a Kalman gain, which is of particular

interest to ensemble-based methods.

The covariance scaling method

Given a true covariance matrix C ∈ RY ×Y , its sample estimate Ĉ from N samples, and a regular-

ization parameter γ ∈ [0, 1], we seek a solution to the following minimization problem:

min
γ

E
[
‖γĈ − C‖2

F

]
, (1)

where ‖•‖2
F is the squared Frobenius norm, and ‖A‖2

F ≡ tr(AAT) for a matrix A. It can be shown

that the “theoretical” solution to Eq. 1 is given by

γ =
tr
(

CCT
)

tr
(
CCT) + 1

N

[
tr
(
CCT) + tr2 (C)

]. (2)

By partitioning the full covariance matrix C as

C =
[
Cmm Cmd
CT

md Cdd

]
, (3)

we can define an optimization problem similar to Eq. 1, but with the cross-covariance matrix Cmd
as the target of approximation:

min
γmd

E
[
‖γmdĈmd − Cmd‖2

F

]
. (4)

Based on the following identities:

E
[
Ĉmd

]
= Cmd, (5)

E
[
tr
(

ĈmdĈT
md

)]
= tr

(
CmdCT

md

)
+ 1

N

[
tr
(

CmdCT
md

)
+ tr (Cmm) tr (Cdd)

]
, (6)

it can be shown that the “theoretical” solution to Eq. 4 is given by:

γmd =
tr
(

CmdCT
md

)
tr
(
CmdCT

md
)

+ 1
N

[
tr
(
CmdCT

md
)

+ tr (Cmm) tr (Cdd)
]. (7)

Approximating the optimal covariance scaling

SinceCmd is typically unknown, in a practical implementation, the “theoretical” solution γmd needs
to be calculated using the sample estimate Ĉmd. To this end, we first re-write Eq. 7 as

γmd = N

N + 1 + φmd
; φmd = tr (Cmm) tr (Cdd)

tr
(
CmdCT

md
) . (8)

Similarly, define φ̂md = tr
(

Ĉmm
)

tr
(

Ĉdd
)

/ tr
(

ĈmdĈT
md

)
, then using the iterative estimation

idea in [1], we replace φmd by φ̂md/γmd,k to account for sampling errors, resulting in the following

Approximating the optimal covariance scaling (cont.)

recursive sequence:

γmd,k+1 = N

N + 1 + φ̂md
γmd,k

. (9)

Then we obtain the “practical’’ solution

γ̂md = lim
k→∞

γmd,k =

{
0, if N < φ̂md
N−φ̂md

N+1 , if N ≥ φ̂md
= max

(
0,

N − φ̂md
N + 1

)
(10)

Extension to the localization problem

The idea behind Eq. 9 can be similarly extended to the localization problem, e.g.,

min
P

E
[
‖P ◦ Ĉ − C‖2

F

]
; ρij ≡ [P]i,j. (11)

The “theoretical” solution to Eq. 11 is [2]:

ρij = N

N + 1 + ciicjj

c2
ij

; N ≡ ensemble size. (12)

Using the idea of recursive sequence, the “practical” solution is given by:

ρ̂ij = max
(

0, (N − ĉiiĉjj/ĉ2
ij)/(N + 1)

)
= max

(
0, (N − 1/r̂2

ij)/(N + 1)
)

, (13)

where r̂ij represents the sample correlation between the i-th model variable and j-th model

variable or simulated data point.

Two interesting observations:

1. Eq. 13 naturally induces a hard threshold for correlation-based localization, since ρ̂ij will be

set to 0 if |r̂ij| ≤ 1/
√

N ;

2. The threshold value, 1/
√

N , corresponds to the (asymptotic) standard deviation of the

sampling errors when the true correlation rij = 0 [3].

Numerical results in a 2D model
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Figure 1. Performance measures versus ensemble size in the 2D toy model. Here, the black curves correspond the

cases without any method to reduce the effect of spurious correlations, red lines to the cases with covariance

scaling applied to the Kalman gain, green lines to the cases with Kalman gain localization, and gray dashed lines

represent the prior mean values of the performance measures averaged over 10 different runs. Among the cases

conducting scaling and localization on the Kalman gain, solid lines represent those where the regularization

parameters were computed only with the prior ensembles, and the dashed lines stand for those where the

regularization parameters were computed at each iteration step of the ESMDA.

Numerical results in the UNISIM-IV benchmark case

Two scenarios are considered:

Base: Distance-based localization for petrophysical parameters

Scaling: Distance-based localization for petrophysical parameters + covariance scaling for global parameters
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Figure 2. Performance measures with and without covariance scaling in the UNISIM-IV case.
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Figure 3. UNISIM-IV Fault multiplier index for Fault 1, and well index multiplier for producer well P11 (upper zone).
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