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states Bayesian inference for non-Gaussian distributions
requires nonlinear updates. Triangular transport is
a versatile method to achieve this.
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observations

states Bayesian inference for non-Gaussian distributions
requires nonlinear updates. Triangular transport is
a versatile method for nonlinear data assimilation.

Linear and Nonlinear Data Assimilation



Transport methods seek a monotone, invertible
transport map from a target distribution to a
reference distribution .

9
A brief introduction to triangular measure transport

Ramgraber, M., Sharp, D., Provost, M. L., & Marzouk, Y. (2025). A friendly introduction to triangular transport. arXiv preprint arXiv:2503.21673. 
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We specifically seek a triangular transport map :

The map comprises of map components :

• Each depends at most on the first entries of the target vector

• Each must be monotone in its last argument , i.e.

(e.g., Spantini et al. 2022)
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Transport maps decompose the target distribution : (Spantini et al. 2022)

Inverse map from reference distribution to target distribution :
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We can manipulate this inversion to characterize conditionals of the target distribution :
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We can manipulate this inversion to characterize conditionals of the target distribution :

This partial inversion factorizes a conditional of the target distribution :
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The map inversion proceeds one
component at a time:
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Conditional inversion manipulates
the inversion process:
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Making triangular maps useful

Applying triangular maps to real systems requires two things:

Sparsity
numerical efficiency 

in high-dimensional systems

Parsimony
identifying the 

optimal degree of nonlinearity



Scaling triangular measure transport
21

Many systems are extremely high-dimensional.
How can we make triangular maps scalable?



Scaling triangular measure transport
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Important feature: Triangular transport maps can naturally capitalize 
on conditional independence by removing variable dependencies.  
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Important feature: Triangular transport maps can naturally capitalize 
on conditional independence by removing variable dependencies.  
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Exploiting conditional independence:

• Is a powerful form of localization

• Reduces the computational complexity of the map
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Many systems are extremely high-dimensional.
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Many systems are extremely high-dimensional.
With Markov properties, triangular maps scale linearly with dimension!
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Finding conditional independence
with the Schäfer algorithm:

1. Initiate an empty set Ω

2. Select the state 𝑥! farthest from
the Ω or the boundary

3. Set the minimum distance as a 
neighbourhood radius 𝑟

4. This state depends on previous
states 𝑥" ∈ Ω with radius 2𝑟.

5. Add 𝑥! to Ω. Go to step 2.

Schäfer, F., Katzfuss, M., & Owhadi, H. (2021). Sparse Cholesky Factorization by Kullback--Leibler Minimization. SIAM Journal on scientific computing, 43(3).
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Applying triangular maps to real systems requires two things:

Sparsity
numerical efficiency 

in high-dimensional systems

Parsimony
identifying the 

optimal degree of nonlinearity



A smoothness and identifiability argument leads to optimizing:
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Draw from (well-known) GAM framework

A variational argument (for simplified cases) leads to map components

A statistical argument simplifies this by imposing additivity and fewer knots:
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Draw from (well-known) GAM framework

An information theoretic argument yields an outer objective:

where



Remember that and are entangled by the inner objective

40
Computation using automatic differentiation and IFT

Define the outer objective (not considering entanglement)

IFT gives the gradient of the outer objective wrt

Griewank, Andreas and Andrea Walther (2008). Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM.
Kristensen, Kasper et al. (2016). TMB: Automatic differentiation and Laplace approximation. In: Journal of Statistical Software 70.i05.



One option for parameterizing a map component function is a separable formulation:

41

basis function evaluations vector

coefficients vector

(positive) coefficients vector

In this presentation, we choose P-Splines as basis functions .

Adapting triangular measure transport
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A P-Spline is a B-Spline (basis spline) that
penalizes differences between the
coefficients at neighbouring knots.

• This promotes smoothness

• This controls the degrees of freedom

Adapting triangular measure transport

Eilers, P. H., & Marx, B. D. (2021). Practical smoothing: 
The joys of P-splines. Cambridge University Press.

Optimizing the smoothing penalty hyper-
parameter for the Akaike Information
Criterion (AIC) finds the optimal trade-off
between nonlinearity and simplicity.
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Adapting triangular measure transport

By adjusting the smoothing coefficient, the outer optimization controls the complexity and
degree of nonlinearity of the map component function.
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Numerical results: Lorenz-63

Test case: Lorenz-63

timesteps:  1000
model error std: 5 / ensemble size 
obs error std: 2
time step length: 0.1
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Numerical results: Lorenz-63

Non-adaptive EnTF simulation

• Increasing levels of map complexity

• Use of L2-regularization and inflation

• Best combination per ensemble size

• Averaged across 10 random seeds

Adaptive P-Spline EnTF

• Number of basis functions set to 𝑁#/%

• Outer optimization seeks optimal lambda
over 10 time steps, then uses median

Ramgraber, M., Baptista, R., McLaughlin, D., & Marzouk, Y. (2023). Ensemble transport smoothing. Part II: Nonlinear updates. 
Journal of Computational Physics: X, 17, 100133.
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Numerical results: groundwater model

Test case: Groundwater model

grid size:  51 by 51 obs error std: 0.01
ensemble size: 100 prior: strongly bimodal K
dynamics: steady-state boundaries: fixed head (left: 10 / right: 5)

The true conductivity field and the resulting hydraulic head distribution
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Numerical results: groundwater model

We have also tried using this approach to infer hydraulic conductivities based on observed
pressure values. In this model, hydraulic conductivities are strongly bimodal.
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Numerical results: groundwater model

Analyzing posterior ensemble realizations reveals that:

• the EnKS blurs out the geological features
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Numerical results: groundwater model

Analyzing posterior ensemble realizations reveals that:

• the EnKS blurs out the geological features
• the P-spline EnTS preserves the bimodality
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Numerical results: groundwater model

We can also see this effect if we compare log K values in different cells of the grid. Note that
we have four clusters of hydraulic conductivity combinations:

Both cells:
low K

Mixed:
low K and high K

Both cells:
high K
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Outlook

Preliminary results are very promising:

• The Schäfer Cholesky algorithm identifies a suitable variable ordering and sufficient
conditional independence

• We demonstrated that this allows us to scale triangular transport methods for application
in larger, grid-based systems

• The resulting algorithm preserves non-Gaussian features significantly better than
conventional linear methods, leading to better inferences.

Next steps:

• Increase the numerical efficiency (parallelization, faster optimization)

• Further develop the adaptation algorithm

• Explore alternative orderings and update strategies



https://arxiv.org/abs/2503.21673

Thank you
for your attention!

References:
Spantini, A., Baptista, R., & Marzouk, Y. (2022). Coupling techniques for nonlinear ensemble filtering. SIAM Review, 64(4), 921-953. 

Ramgraber, M., Baptista, R., McLaughlin, D., & Marzouk, Y. (2023). Ensemble transport smoothing. Part II: Nonlinear updates. Journal of Computational 
Physics: X, 17, 100133.

Eilers, P. H., & Marx, B. D. (2021). Practical smoothing: The joys of P-splines. Cambridge University Press.

Acknowledgements:
The research leading to these results has received funding from 
the Dutch Research Council NWO under Talent Programme 
grant VI.Veni.232.140, and Equinor’s DaTeS project.

54

Tutorial:
A friendly introduction 
to triangular transport

Related:
Berent‘s Ensemble 

Information Filter paper

https://arxiv.org/abs/2501.09016 

https://arxiv.org/abs/2503.21673
https://arxiv.org/abs/2501.09016


Maps from samples seek to maximize the log-likelihood of the
target samples over the map‘s pullback density :
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Triangular map optimization

Spantini, A., Baptista, R., & Marzouk, Y. (2022). Coupling techniques for nonlinear ensemble filtering. 
SIAM Review, 64(4), 921-953. 
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This can be further decomposed into individual optimization
objectives for the map component functions:

Triangular map optimization

Maps from samples seek to maximize the log-likelihood of the
target samples over the map‘s pullback density :

Spantini, A., Baptista, R., & Marzouk, Y. (2022). Coupling techniques for nonlinear ensemble filtering. 
SIAM Review, 64(4), 921-953. 


