20th international EnKF workshop (2025)

Analyzing the performance of ensemble-based disaggregation in GRACE(-FO) Terrestrial Water Storage Data Assimilation and exploring a deterministic alternative

Leire Retegui-Schiettekatte⁽¹⁾, Maike Schumacher⁽¹⁾, Fan Yang⁽¹⁾, Henrik Madsen⁽²⁾, and Ehsan Forootan⁽¹⁾

Department of Sustainability and Planning, Aalborg University (Denmark) DHI (Denmark) (1)

June 16 - 18, Ullensvang, Norway

(2`

AALBORG UNIVERSITY

Index

- 1. Intro: hydrological models and TWS DA
- 2. Method: classical EnKF and new approach
- 3. Proof of concept in Balone River Basin
- 4. Evaluation and validation
- 5. Conclusions

Hydrological models

- Input: meteorological forcing
- Output: water storage and hydrological fluxes
- Benefits: integral
 high-resolution representation
- Limitations: errors, unrepresented processes...

2002

present

Total Water Storage

2017 2019

Gravity Recovery and Climate Experiment

DA combines benefits

Zaitchik et al. (2008), van Dijk et al. (2014), Girotto et al. (2016), Schumacher et al. (2018)...

- Integral representation
- High resolution
- Increased realism

Limitations in ensemble-based TWS disaggregation

 Inaccurate vertical disaggregation degrades some individual state variables

> Girotto et al. (2016), Girotto et al. (2019), Tangdamrongsub et al. (2020), Schulze et al. (2024) ...

Limitations in ensemble-based TWS disaggregation

Limitations in ensemble-based TWS disaggregation

Previous solutions:

- Multi sensor $DA \rightarrow conflicts$
- Localization

Girotto et al. (2019), Retegui-Schiettekatte et al. (2025)... 2 objectives:

Analyze model update-response to understand impact on individual storages

Propose and test novel rescaling disaggregation approach (EnKF-R)

2 objectives:

Analyze model update-response to understand impact on individual storages

Propose and test novel rescaling disaggregation approach (EnKF-R)

Experimental setting

- Model: W3RA, daily 10km resolution
- Ensemble perturbation
 - Precipitation
 - Nine model parameters
- Forcing data: ERA5 + ERA5-Land
- GRACE TWS product: ITSG-18 (sub-basin averaged)

TWS dynamics (EnKF)

Groundwater dynamics (EnKF).

Measuring of model update-response (EnKF).

Measuring of model update-response

2 objectives:

Analyze model update-response to understand impact on individual storages

Propose and test novel rescaling disaggregation approach (EnKF-R)

TWS and groundwater dynamics

Groundwater update-response

General evaluation & validation (Murray-Darling)

Conclusion

General evaluation & validation (Brahmaputra)

General evaluation & validation (Brahmaputra)

General evaluation & validation (Brahmaputra)

Introduction	Objectives	UR dynamics		Storage-disaggregation	Conclusion
Conclusions					
Upo reve impac	late-response dy eal additional ins at of TWS DA on storage compon	ynamics sights on ind <mark>N@tupu</mark> ents	blisl	EnKF-R can achi results as ensem neds fgregation wh drawbacks of t	ieve similar nble-based nile avoiding the latter

Conclusions

Update-response dynamics reveal additional insights on impact of TWS DA on individual storage components EnKF-R can achieve similar results as ensemble-based disaggregation while avoiding drawbacks of the latter

Not published yet

Additional strengths: EnKF-R is computationally less expensive Limitations:

- Discontinuities between sub-basins
- Ensemble spread of individual estimates
- Transferability to other basins?

References

B. F. Zaitchik, M. Rodell, and R. H. Reichle, "Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin," *Journal of Hydrometeorology*, vol. 9, no. 3, pp. 535–548, Jun. 2008, doi: 10.1175/2007JHM951.1.

A. I. J. M. van Dijk, L. J. Renzullo, Y. Wada, and P. Tregoning, "A global water cycle reanalysis merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble," *Hydrology and Earth System Sciences*, vol. 18, no. 8, pp. 2955–2973, Aug. 2014, doi: <u>10.5194/hess-18-2955-2014</u>.

M. Girotto, G. J. M. De Lannoy, R. H. Reichle, and M. Rodell, "Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model," *Water Resources Research*, vol. 52, no. 5, pp. 4164–4183, 2016, doi: <u>10.1002/2015WR018417</u>.

M. Schumacher *et al.*, "Improving drought simulations within the Murray-Darling Basin by combined calibration/assimilation of GRACE data into the WaterGAP Global Hydrology Model," *Remote Sensing of Environment*, vol. 204, pp. 212–228, Jan. 2018, doi: 10.1016/j.rse.2017.10.029.

M. Girotto, R. H. Reichle, M. Rodell, Q. Liu, S. Mahanama, and G. J. M. De Lannoy, "Multi-sensor assimilation of SMOS brightness temperature and GRACE terrestrial water storage observations for soil moisture and shallow groundwater estimation," *Remote Sensing of Environment*, vol. 227, pp. 12–27, Jun. 2019, doi: 10.1016/j.rse.2019.04.001.

N. Tangdamrongsub *et al.*, "Multivariate data assimilation of GRACE, SMOS, SMAP measurements for improved regional soil moisture and groundwater storage estimates," *Advances in Water Resources*, vol. 135, p. 103477, Jan. 2020, doi: <u>10.1016/j.advwatres.2019.103477</u>.

K. Schulze, J. Kusche, H. Gerdener, P. Döll, and H. Müller Schmied, "Benefits and Pitfalls of GRACE and Streamflow Assimilation for Improving the Streamflow Simulations of the WaterGAP Global Hydrology Model," *Journal of Advances in Modeling Earth Systems*, vol. 16, no. 10, p. e2023MS004092, 2024, doi: <u>10.1029/2023MS004092</u>.

J. L. Anderson, "A Local Least Squares Framework for Ensemble Filtering," *Monthly Weather Review*, vol. 131, no. 4, pp. 634–642, Apr. 2003, doi: 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

L. Retegui-Schiettekatte, M. Schumacher, H. Madsen, and E. Forootan, "Assessing daily GRACE Data Assimilation during flood events of the Brahmaputra River Basin," *Science of The Total Environment*, vol. 975, p. 179181, May 2025, doi: 10.1016/j.scitotenv.2025.179181.

M. Girotto *et al.*, "Benefits and pitfalls of GRACE data assimilation: A case study of terrestrial water storage depletion in India," *Geophysical Research Letters*, vol. 44, no. 9, pp. 4107–4115, 2017, doi: 10.1002/2017GL072994.

20th international EnKF workshop (2025)

Thank you!

June 16 - 18, Ullensvang, Norway

Leire Retegui-Schiettekatte

leirears@plan.aau.dk

