Estimation of model evidence and
stacking with ensemble methods

A review with an overview and perhaps a survey
Andreas S. Stordal
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Bayesian Model Averaging and Stacking in Data
Assimilation

o Bayesian framework for estimating an unknown quantity X ~ p(x) given a
measurement Y ~ p(y|x) within the framework of several different
models/scenarios/methods.

o Different geological scenarios, different climate models etc.
e For each model, My, M5, ... M, we estimate

p(x|y, M) = p(x|M)p(y|x,M)C 1, i=1,....m

where C; = [y p(y|x, M)p(x|M;) dx is the normalizing constant or model
evidence.
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Bayesian Model Averaging

e The posterior distribution is

k
p(x|y) =>_p(xly. M)p(Mily),
i=1

Ply|Mi)p(M;)
Sje1 Py IM)P(M)

p(Mily) =

e p(M;) is prior probability for model i (known)
e p(y|M;) = C; is the model evidence
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Sampling from the prior and posterior
C = [x p(y|x)p(x) dx (one model for simplicity)
Prior sampling: {x/}}¥; ~ p(x)
C=N"3"p(y|¥)) (unbiased)
j=1

Posterior sampling: {x/}; ~ p(x|y)

1
N-1 Zj,\i1 py|x)

C-= (biased)
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Importance sampling

Proposal sampling: {x/}}; ~ Q(x)

~ N .
C=N"T">"w(x¥) (unbiased)
j=1




Multi-fidelity approach

Journal of Computational Physics
LSEVIER Volume 514, 1 October 2024, 113209

Calculating Bayesian model evidence for
porous-media flow using a multilevel
estimator

Trond Mannseth & & Kristian Fossum, Sigurd 1. Aanonsen




Multi-fidelity approach

to slow(L)

Journal of Computational Physics
Volume 514, 1 October 2024, 113209

E e /=1,...,L model levels ranging from fast(1)

L
Calculating Bayesian model evidence for - ; weCe,

porous-media flow using a multilevel L
=1

. -1
estimator we =N _N))
J

Trond Mannseth & &, Kristian Fossum, Sigurd I. Aanonsen

o Weights sum to one (in general)



Gaussian approximation

Royal Meteorological Society

Estimating model evidence using data assimilation o Gaussian approximations for EnKF
A, Hannart® and M. Ghil™® EnS4 DVAR and IEn KS

wter, Bergen, Norviay

i ——— o Explicit formulas involving mean and
- sample covariances (approximate Hessian)
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Ensemble on extended state space

o We define a new target or ’posterior’
distribution in pseudo time

Contents ists available at SclenceDirect K—1
1
Advances in Water Resouces Y(Xo:x) = C7 p(Xk)P(Y |Xk) H B(Xk|Xk+1),
j=0

Journal hompage: www.lsevier comlocate/advivatres

which leaves the posterior as marginal

Ierative ensemble smoothers in the annealed importance sampling 0 distribution for time K
framework

Andreas S, Stordal*, Ahmed H, Elsheikh”
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Ensemble on extended state space

Contents ists available at SclenceDirect

Advances in Water Resources

Journal hompage: www.lsevier comlocate/advivatres

Iterative ensemble smoothers in the annealed importance sampling
framework

Andreas S, Stordal*, Ahmed H, Elsheikh”
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o We define a new target or ’posterior’
distribution in pseudo time
K—1
Y(X0:) = C ' p(xk)p(y[xK) TT BXk|Xks1),
j=0

which leaves the posterior as marginal
distribution for time K

e Our joint sampling distribution ,Q (the
proposal), is then given by

K
Q(Xo:x) = P(x0) | | F(Xk|Xk—1)
j=1
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Contd

Target: v(xo : K) = C~"p(xi)p(y |Xk) TT /o " B(Xk[Xk41)

Proposal: Q(xo:x) = P(X0) T/ 1 F(Xk|Xk1)

o Fis a’forward’ kernel defined by the algorithm at hand (ESMDA, EnKF....)
B is a 'backward’ kernel which has to be user defined (sadly)
For sampling, an annealed version of the target is used at each iteration

Not necessary for Evidence computation as we do not re-sample ensemble
members

C=N"SN, wix,). w=-Q
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Optimality via discretized diffusion

e F is selected as discretized diffusion

e Optimal B is a 'backward’ discretized
diffusion involving Vqx(x), the 'log-score’

e g is the unknown marginal density of
samples at iteration k

o Neural Network, Sy and score matching

Armaud Dowel, Wi Grathwll, eander .. G, Mathens ik Sirlbmann minimizing
Degplind
{arnauddoucet, vgrathwotl lexmatthevs, stratimann} Qgoogle con K

£(0) =0 Ea|l1So(x) — VF(xlx1)]?]
k=1

Score-Based Diffusion meets
Annealed Tmportance Sampling




Alternative to score matching

V'°9Q(Xk)=/V|09 F (X[ Xk—1)q(Xk—1 | Xk) X1,

F(Xk|Xk—1)

= [ Vlog F (x| 1) 200

q(Xk—1)AXk—1.

Estimate Vlog q(xx) at iteration k for particle i using the set {x,/;_1 }j’i1

Vlog q(xk ZVIongk|xk D),
J=1

F(xi|x_,)

- P )
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Algorithms

o For stochastic algorithms (e.g. ESMDA) we sequentially compute the log
weights as

log wp = —log p(xp)
log wy = log wy_1 +log B(xk_1|xk) —log F(Xk|Xk_1), k=1,...K—1

log wk = log w1 +log p(y|xk) +log p(xk)
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Algorithms

o For stochastic algorithms (e.g. ESMDA) we sequentially compute the log
weights as

log wp = —log p(xp)
log wy = log wy_1 +log B(xk_1|xk) —log F(Xk|Xk_1), k=1,...K—1

log wk = log w1 +log p(y|xk) +log p(xk)

o For deterministic maps F(xk|xx_1) = T(xx_1) (e.9. EnSRF) we require V T(x)
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Some examples

o ESMDA updates the ensemble as

Xi = X1+ K(a)(y —H(X_1) +axR™/22)

o Forward kernel, F(xx|xx_1) is Gaussian with mean and covariance

pk = Xk—1 + K(ak)(y —H(Xk—1)
Py = oK (ak) Ry (ak)
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Some examples

o EnSF updates the ensemble as

pk = pik—1+0K1(y — H(Xk_-1))

o Forward kernel, T(xx_4) is deterministic

T(Xk—1) = pe—1 + AXy—1
VT=N""=NT5KVH+(I—6Ko)"2(1 = 1/N)I

o Gradient of measurement operator required (Same for RML, EnRML)

RCE
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Bayesian Stacking

Instead of using evidence in model weighting, find maximum over {w'}7,

d m
> log (Z w'p(yilY(—i); Mi))
i=1 i=1
LOQ likelihood p(y;|y(—)) requires rerunning d experiments.

PPk Vi) T " Bk Xke1)
Wa(Xo, - - -, Xk) = 5 ;
P(X0) I Tie=1 Fr(Xi|Xk—1)

and rewrite

plyilxn)p(xyly—iy) = pWilX5)p(V—i) ’XJ)p(XJ)C(_J,')
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Stacking estimate

e The sum of the importance weights

_ PYIx)P(i) TTjo' BOXK|Xies1)

Wa(Xo:K) D x0)P00) 111 F e )

will converge to C(_j



Stacking estimate

e The sum of the importance weights

Wa(Xo:x) = Py [xi)P(xi) TTio' BOXk|Xkr1)
T p(ilxi)p(xo) TRzt F O xk—1)

will converge to C(_j
e Furthermore logw» = logw — log p(y;|xk) (from evidence computation)
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Stacking estimate

e The sum of the importance weights

_ PYIx)P(i) TTjo' BOXK|Xies1)
P(yilxi)P(Xo) TTh-1 F(Xk|Xk—1)

W2 (Xo:k)

will converge to C(_j
e Furthermore logw» = logw — log p(y;|xk) (from evidence computation)
» We can estimate p(y;|y(—;) using

N
YL

==k
Djs1 W

PilY—p)

without doing any cross-validation
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Toy example, 1000 reps

o X~ N(u,0?),Y=aX?+bX+e
o Estimate model evidence with ESMDA(red) and unweighted posterior
sampling(blue)

e W
= L]
(]
(]
- ]
=
=
L]
& i
=] "
= = ]
Ezqh
=
= A
=
i NN
~ e e e e e e
= —
= rf_,_,;—_—-:::z‘;-——w——-————————
4
1
= 5,:
s
= u T T T
o ooo zooo 33000 4000 felale)

Sample size

Figure: Evidence estimates as function sample size



Two observations, stacking
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Summary

Defined a new way to compute model evidence for iterative ensemble
methods

May be computed during iterations with almost no extra cost
Extended to stacking with no additional cost

Large variance, reduce by combining with multi-fidelity methods
Evaluate and compare with other methods proposed



