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Bayesian Model Averaging and Stacking in Data
Assimilation

• Bayesian framework for estimating an unknown quantity X ∼ p(x) given a
measurement Y ∼ p(y |x) within the framework of several different
models/scenarios/methods.

• Different geological scenarios, different climate models etc.
• For each model, M1,M2, . . .Mm, we estimate

p(x |y ,Mi ) = p(x |Mi )p(y |x ,Mi )C−1
i , i = 1, . . . ,m

where Ci =
∫
X p(y |x ,Mi )p(x |Mi )dx is the normalizing constant or model

evidence.
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Bayesian Model Averaging

• The posterior distribution is

p(x |y ) =
k∑

i=1
p(x |y ,Mi )p(Mi |y ),

p(Mi |y ) =
p(y |Mi )p(Mi )∑k
j=1 p(y |Mj )p(Mj )

.

• p(Mi ) is prior probability for model i (known)
• p(y |Mi ) = Ci is the model evidence



Bayesian Model Averaging

• The posterior distribution is

p(x |y ) =
k∑

i=1
p(x |y ,Mi )p(Mi |y ),

p(Mi |y ) =
p(y |Mi )p(Mi )∑k
j=1 p(y |Mj )p(Mj )

.

• p(Mi ) is prior probability for model i (known)

• p(y |Mi ) = Ci is the model evidence



Bayesian Model Averaging

• The posterior distribution is

p(x |y ) =
k∑

i=1
p(x |y ,Mi )p(Mi |y ),

p(Mi |y ) =
p(y |Mi )p(Mi )∑k
j=1 p(y |Mj )p(Mj )

.

• p(Mi ) is prior probability for model i (known)
• p(y |Mi ) = Ci is the model evidence



Sampling from the prior and posterior

C =
∫
X p(y |x)p(x)dx (one model for simplicity)

Prior sampling: {x j}N
j=1 ∼ p(x)

Ĉ = N−1
N∑

j=1
p(y |x j ) (unbiased)

Posterior sampling: {x j}N
j=1 ∼ p(x |y )

Ĉ =
1

N−1∑N
j=1 p(y |x j )

(biased)



Importance sampling

Proposal sampling: {x j}N
j=1 ∼ Q(x)

Ĉ = N−1
N∑

j=1
w(x j ) (unbiased)

w(x) = p(y |x)p(x)
Q(x)



Multi-fidelity approach

• ℓ = 1, . . . ,L model levels ranging from fast(1)
to slow(L)

Ĉ =
L∑

ℓ=1

wℓĈℓ,

wℓ = Nℓ(
L∑

j=1

Nj )−1

• Weights sum to one (in general)
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Gaussian approximation

• Gaussian approximations for EnKF
Ens4DVAR and IEnKS

• Explicit formulas involving mean and
sample covariances (approximate Hessian)



Ensemble on extended state space
• We define a new target or ’posterior’

distribution in pseudo time

γ(x0:K ) = C−1p(xK )p(y |xK )
K −1∏
j=0

B(xk |xk+1),

which leaves the posterior as marginal
distribution for time K

• Our joint sampling distribution ,Q (the
proposal), is then given by

Q(x0:K ) = p(x0)
K∏

j=1

F (xk |xk−1)
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Cont’d

Target: γ(x0 : K ) = C−1p(xK )p(y |xK )
∏K −1

j=0 B(xk |xk+1)

Proposal: Q(x0:K ) = p(x0)
∏K

j=1 F (xk |xk−1)

• F is a ’forward’ kernel defined by the algorithm at hand (ESMDA, EnKF....)
• B is a ’backward’ kernel which has to be user defined (sadly)
• For sampling, an annealed version of the target is used at each iteration
• Not necessary for Evidence computation as we do not re-sample ensemble

members
• Ĉ = N−1∑N

j=1 w(x j
0:K ), w = γQ−1
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Optimality via discretized diffusion

• F is selected as discretized diffusion
• Optimal B is a ’backward’ discretized

diffusion involving ∇qk (x), the ’log-score’
• qk is the unknown marginal density of

samples at iteration k
• Neural Network, Sθ and score matching

minimizing

L(θ) = δ
K∑

k=1

EQ

[
∥Sθ(xk )−∇F (xk |xk−1)∥2

]
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Alternative to score matching

∇ logq(xk ) =
∫

∇ logF (xk |xk−1)q(xk−1|xk )dxk−1,

=
∫

∇ logF (xk |xk−1)
F (xk |xk−1)

q(xk )
q(xk−1)dxk−1.

Estimate ∇ logq(xk ) at iteration k for particle i using the set {x j
k−1}N

j=1

∇ logq(x i
k ) ≈

N∑
j=1

∇ logF (x i
k |x j

k−1)ω(x j
k−1),

ω(x j
k−1) =

F (x i
k |x j

k−1)∑N
ℓ=1 F (x i

k |xℓ
k−1)



Algorithms

• For stochastic algorithms (e.g. ESMDA) we sequentially compute the log
weights as

logw0 = − logp(x0)
logwk = logwk−1 + logB(xk−1|xk )− logF (xk |xk−1), k = 1, . . .K −1
logwK = logwK −1 + logp(y |xK ) + logp(xK )

• For deterministic maps F (xk |xk−1) = T (xk−1) (e.g. EnSRF) we require ∇T (x)
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Some examples

• ESMDA updates the ensemble as

Xk = Xk−1 +K (αk )(y −H(Xk−1) +αkR−1/2Z )

• Forward kernel, F (xk |xk−1) is Gaussian with mean and covariance

µk = xk−1 +K (αk )(y −H(xk−1)

Pk = α2
kK (αk )R⊤

K (αk )
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Some examples

• EnSF updates the ensemble as

µk = µk−1 + δK1(y −H(Xk−1))

• Forward kernel, T (xk−1) is deterministic

T (xk−1) = µk−1 +Axk−1

∇T = N−1I −N−1δK1∇H + (I − δK2)1/2(1−1/N)I

• Gradient of measurement operator required (Same for RML, EnRML)
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Bayesian Stacking
Instead of using evidence in model weighting, find maximum over {w i}m

i=1

d∑
i=1

log

( m∑
i=1

w ip(yi |y(−i),Mi )

)

LOO likelihood p(yi |y(−i)) requires rerunning d experiments.

w2(x0, . . . ,xK ) =
p(yi |xJ )p(xK |y(−i))

∏K −1
j=0 B(xk |xk+1)

p(x0)
∏J

k=1 Fk (xk |xk−1)
,

and rewrite

p(yi |xJ )p(xJ |y(−i)) = p(yi |xJ )p(y(−i)|xJ )p(xJ )C−1
(−i)



Stacking estimate

• The sum of the importance weights

w2(x0:K ) =
p(y |xK )p(xK )

∏K −1
k=0 B(xk |xk+1)

p(yi |xK )p(x0)
∏K

k=1 F (xk |xk−1)
,

will converge to C(−i)

• Furthermore logw2 = logw − logp(yi |xK ) (from evidence computation)
• We can estimate p(yi |y(−i)) using

p̂(yi |y(−i)) =
∑N

j=1 w j∑N
j=1 w j

2

without doing any cross-validation
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Toy example, 1000 reps
• X ∼ N(µ,σ2), Y = aX 2 +bX + ϵ
• Estimate model evidence with ESMDA(red) and unweighted posterior

sampling(blue)

Figure: Evidence estimates as function sample size



Two observations, stacking
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Summary

• Defined a new way to compute model evidence for iterative ensemble
methods

• May be computed during iterations with almost no extra cost
• Extended to stacking with no additional cost
• Large variance, reduce by combining with multi-fidelity methods
• Evaluate and compare with other methods proposed
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