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Global biopharmaceuticals 
market
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• Dominated by Monoclonal 
Antibodies (mAb)

• Highly specific targeting
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Bioprocessing of therapeutic 
proteins in mammalian cells
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• Industrial production of therapeutic 
proteins, rely on living cells

• Mammalian cells are favoured due 
to compatibility to human bodies

• Nearly 70% of therapeutic proteins 
are produced in Chinese Hamster 
Ovary (CHO) cells.

Carrara, Stefania C.  et al, International Journal of Pharmaceutics (2021),  Volume 594
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Mechanistic kinetic 
modelling for CHO cell 
process optimization
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Challenges in applying mechanistic models in cell cultures

Difficult to handle process unreliability 
and batch-to-batch inconsistency

Cell Line A Cell Line B 

Hard to achieve knowledge transfer 
across cell lines, scales etc.

Process uncertainty

Sensor noise

Parameter uncertainty

Input uncertainty

?
Does not account for various 
sources of uncertainties explicitly

Dynamic 
Behaviour

Fixed model parameters can't adapt 
to dynamic changes

Mechanistic kinetic modeling is a 
mathematical tool that is derived from 
first-principles in biological systems.

• Provides insights into cell growth, 
death, and metabolism.

• Enables accurate predictions for 
bioprocess optimization.

• Improves productivity and product 
quality.
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An adaptative approach : Transferring knowledge across systems with EnKF
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System A 
Model: (Kotidis et al. 2019)1 

 

System B
Objective system assuming no 

model available 
 

EnKF Dual State and Model 
Parameter Estimation

Transfer of model 
structure & initialized with 
base model parameters

Updated variable states 
& model parameters 
based on measurements

Measurements 
update

• The EnKF can estimate system states and model parameters for a new System B using a single dataset, 
based on an existing model initially designed for System A.

• EnKF allows dynamic updates of states and model parameters, also explicitly representing uncertainty.

Kotidis, P. et al. Biotechnol Bioeng (2019) 116:1612–1626
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What are our System A and System B? 
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Shake flask
Cell line A
Product:  IgG 1
Temperature: 36.5 °C

System A: 
Model available

System B:
No model available

What is kept the same ? What is different ?

Dataset 1: Cell line A, product, temperature, feed Scale

Dataset 2: Cell line A, product, feed Scale, temperature 

Dataset 3: Scale, feed, temperature Cell line B, product

Dataset 4: Scale, temperature Cell line B, product, feed

Dataset 5: Scale, temperature Cell line B, product, feed
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States 
uncertainty 
decreases
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EnKF Workflow
 

States 
Ensembles Parameter 

Ensembles 

Generate state and parameter distributions to account for uncertainty and system differences

Update model parameters based on measurements 𝜃!"#$" = 𝜃!"#$% + 𝐾!"#& 𝑧!"#$ − 𝑥!"#$% 	

𝑥!"#$% = 𝑓 𝑥!$", 𝜃!"#$% + 𝜀!$ ,	 𝜀!$ ∼ 𝑁 0, Σ!&Predict model states with preliminary mechanistic model

Measurements available?

Yes

Generate measurements replicates within experimental error bars         𝑧!"#$ ∼ 𝑁 𝑧!"#, Σ!"#' 	

Predict model states using the updated parameters  𝑥!"#$% = 𝑓 𝑥!$", 𝜃!"#$" + ε!$  ,	 ε!$  ∼ 𝑁 0, Σ!&  

𝑥!"#$" = 𝑥!"#$% + 𝐾!"#& 𝑧!"#$ − 𝑥!"#$%Update states estimate based on measurements

No
𝑡 = 𝑡 + 1End of Cell Culture? 

Yes

Finish

No Use the same model parameters 
at the next time point

Parameter 
uncertainty 
decreases
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Case study: Understanding lactate metabolism
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• Byproduct: CHO cells convert 
excess glucose into lactate during 
rapid growth or limited oxygen.

• Reutilisation: Under favourable 
conditions, CHO cells can later 
consume lactate as an alternative 
energy source.

• Process impact: Controlling lactate 
dynamics is essential for optimal 
cell growth, product yield, and 
quality.

Pan., X et al. Cytotechnology (2017) 69:39–56
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Lactate metabolism in mathematical forms
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• [Lac] is system state lactate concentration.

• The ODE  is the lactate material balance, correlated with rest of the cell culture system through cell density, 𝑋). 

•  𝑞$%& is the internal lactate metabolism term, also coupling to the system through cell growth, µ.

• 𝑞$%& is also strongly interacting with glucose through 𝑌$% ⁄& /0& and 𝑞/0&.

• 𝑳𝒂𝒄𝒎𝒂𝒙𝟏 and 𝑳𝒂𝒄𝒎𝒂𝒙𝟐	are lactate consumption activation constants.
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Dataset 1 & 2 - Scaling up from shake flask to bioreactor 

Bioreactor 36.5 °C, 
feed type 1 Shake flask Bioreactor

Bioreactor 32 °C, 
feed type 1
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Dataset 3, 4 & 5 – Different cell line and feeds, 
same scale

Different cell line, same feed 
type 1

Cell Line A Cell Line B 

Different cell line & feed type 2 Different cell line & feed type 3
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• Initial parameter are based on model parameters for System A, with uncertainty. 

• Model estimates become more confident as more measurements are incorporated 
from the new System B, model parameters uncertainty reduce.

Dynamic Evolution of Model Parameters for Biological Insights: Knowledge 
Transfer from System A to System B
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Model parameter 
uncertainty 
decreases

Something very controversial… No parameter covariance inflation is applied. 

Why does it work in bioprocessing context? 

• Very sparse dataset, 12-14 observation updates for entire run.

• Process development stage, biological understanding more important than accuracy.

• Mitigate ensemble collapse by setting large uncertainty spread at the beginning, computational time not 
a bottleneck due to slow bioprocesses. 

• Recursive parameter updates without inflation becomes a dynamic parameter sensitivity analysis for 
biological understanding.



Imperial College London

Effect of scale and temperature on lactate metabolism through parameter 
ensemble propagation  
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Base shake flask (red) Bioreactor 36.5 °C (blue) Bioreactor 32 °C (green)
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Effect of cell line on lactate metabolism through parameter ensemble 
propagation  
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Cell line A (red) Cell line B (blue)
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Effect of cell line and feed on lactate metabolism through parameter ensemble 
propagation  
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Cell line B, feed type 3 (green)Cell line B, feed type 2 (blue)Cell line B, feed type 1 (red)
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Key Takeaways

16

• Real-Time Adaptation: EnKF enables model adaptation across different systems using minimal 
experimental data. 

• Uncertainty Quantification: EnKF explicitly accounts for uncertainties (e.g., input/output, process 
variability, sensor noise) to improve prediction reliability.

• No parameter ensemble inflation: Changes in the parameter ensemble spread only comes from 
measurements of the new system, serve as dynamic sensitivity analysis for model parameters.

• Biological Insights:  System understanding such as metabolic shifts through natural  parameter 
ensemble propagation.

• Future work : parameter covariance inflation if more frequent observations, more accurate 
prediction for manufacturing settings required. 
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Please ask me (hard) questions to 
help me prepare for my viva 

Scan this for my email and LinkedIn Page. 

Also find me at poster session for more details


