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Bioprocessing of therapeutic
proteins in mammalian cells

* Industrial production of therapeutic
proteins, rely on living cells

« Mammalian cells are favoured due
to compatibility to human bodies

» Nearly 70% of therapeutic proteins

are produced in Chinese Hamster
Ovary (CHO) cells.

Imperial College London Carrara, Stefania C. et al, International Journal of Pharmaceutics (2021), Volume 594
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Mechanistic kinetic
modelling for CHO cell
process optimization

Mechanistic kinetic modeling is a
mathematical tool that is derived from
first-principles in biological systems.

* Provides insights into cell growth,
death, and metabolism.

» Enables accurate predictions for
bioprocess optimization.

* Improves productivity and product
quality.

Imperial College London

Challenges in applying mechanistic models in cell cultures
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An adaptative approach : Transferring knowledge across systems with EnKF

* The EnKF can estimate system states and model parameters for a new System B using a single dataset,
based on an existing model initially designed for System A.

* EnKF allows dynamic updates of states and model parameters, also explicitly representing uncertainty.

System A System B
Model: (Kotidis et al. 2019)’ Objective system assuming no
Measurements model available
update
Transfer of model

structure & initialized with EnKF Dual State and Model Updated variable states
base model parameters Parameter Estimation & model parameters

based on measurements

Imperial College London Kotidis, P. et al. Biotechnol Bioeng (2019) 116:1612-1626 5



What are our System A and System B?

Shake flask
Cell line A

Product: 1gG 1
Temperature: 36.5 °C

System A:
Model available

Imperial College London

What is kept the same ? What is different ?
Dataset1: | Cell line A, product, temperature, feed Scale
Dataset 2: | Cell line A, product, feed Scale, temperature
Dataset 3: | Scale, feed, temperature Cell line B, product
Dataset 4: | Scale, temperature Cell line B, product, feed
Dataset 5: | Scale, temperature Cell line B, product, feed

System B:
No model available




Concentration

EnKF Workflow
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Predict model states wit

h preliminary mechanistic model

xiy1 = f(xl*,0051)
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Case study: Understanding lactate metabolism

Byproduct: CHO cells convert
excess glucose into lactate during
rapid growth or limited oxygen.

Reutilisation: Under favourable
conditions, CHO cells can later
consume lactate as an alternative

energy source.

Process impact: Controlling lactate
dynamics is essential for optimal
cell growth, product yield, and

quality.

Imperial College London Pan., X et al. Cytotechnology (2017) 69:39-56
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Lactate metabolism in mathematical forms

d(V[Lac]
( dtac ) =qracVXy — Four [Lac]

_ L v Lacypax — [Lac] +m Laciaxz — [Lac]
Lac YX,Lac Lac/GlcY9Gic Lacmaxl lac Lacmaxl

* [Lac]is system state lactate concentration.
* The ODE is the lactate material balance, correlated with rest of the cell culture system through cell density, X,,.
. q.qc 1S the internal lactate metabolism term, also coupling to the system through cell growth, p.
°  (qc IS also strongly interacting with glucose through Y, ;.6 and qgc.

* Lac,,41 and Lac,,,,, are lactate consumption activation constants.
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Dataset 1 & 2 - Scaling up from shake flask to bioreactor
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Dataset 3, 4 & 5 - Different cell line and feeds,

same scale
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Dynamic Evolution of Model Parameters for Biological Insights: Knowledge
Transfer from System A to System B

Model parameter
uncertainty

: : : decreases
* Model estimates become more confident as more measurements are incorporated /

from the new System B, model parameters uncertainty reduce.

* Initial parameter are based on model parameters for System A, with uncertainty.

Something very controversial... No parameter covariance inflation is applied.

Why does it work in bioprocessing context?

* Very sparse dataset, 12-14 observation updates for entire run.
* Process development stage, biological understanding more important than accuracy.

* Mitigate ensemble collapse by setting large uncertainty spread at the beginning, computational time not
a bottleneck due to slow bioprocesses.

* Recursive parameter updates without inflation becomes a dynamic parameter sensitivity analysis for
biological understanding.

Imperial College London 12



Effect of scale and temperature on lactate metabolism through parameter
ensemble propagation
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Effect of cell line on lactate metabolism through parameter ensemble

propagation
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Effect of cell line and feed on lactate metabolism through parameter ensemble

propagation
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Key Takeaways

* Real-Time Adaptation: EnKF enables model adaptation across different systems using minimal
experimental data.

« Uncertainty Quantification: EnKF explicitly accounts for uncertainties (e.g., input/output, process
variability, sensor noise) to improve prediction reliability.

* No parameter ensemble inflation: Changes in the parameter ensemble spread only comes from
measurements of the new system, serve as dynamic sensitivity analysis for model parameters.

« Biological Insights: System understanding such as metabolic shifts through natural parameter
ensemble propagation.

* Future work : parameter covariance inflation if more frequent observations, more accurate
prediction for manufacturing settings required.

Imperial College London 16



IMPERIAL

Thank you

Please ask me (hard) questionsto /X
help me prepare for my viva

Scan this for my email and LinkedIin Page.

Also find me at poster session for more details



